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1. Introduction.

In this paper we study the structure and perturbation theory of certain
classes of bounded operators on a Banach space. These classes contain the
semi-Fredholm operators, and also most of the generalizations of Fredholm
operators which appear in the literature. For a bounded operator $T$ , our study
focuses on the sequences of ranges, $\{R(T^{n})\}$ , and of null-spaces, $\{N(T^{n})\}$ , and
on the analogous sequences for small or compact perturbations of $T$ . We are
particularly interested in the spaces

(1.1) $R(T^{\infty})=\bigcap_{n}R(T^{n})$ and $N(T^{\infty})=\bigcup_{n}N(T^{n})$ ,

and the analogous spaces for perturbations of $T$ . The results we prove will be
similar to some results which have been useful in spectral theory [21], [12], in
the structure theory of Banach algebras [10], [23], and in the study of automatic
continuity [13], [22].

If $T$ is a bounded linear operator on the Banach space $X$, then, for each
nonnegative integer $n,$ $T$ induces a linear transformation from the vector space
$R(T^{n})/R(T^{n+1})$ to the space $R(T^{n+1})/R(T^{n+2})$ . We will let $k_{n}(T)$ be the dimen-
sion of the null space of the induced map and let

(1.2) $k(T)=\sum_{0}^{\infty}k_{n}(T)$ .
The following definition describes the classes of operators we will study.

DEFiNITION (1.3). If there is a nonnegative integer $d$ for which $k_{n}(T)=0$

for $n\geqq d$ ($i.e.$ , if the induced maps are isomorphisms for $n\geqq d$ ), we say that $T$

has eventual uniform descent; and, more precisely, that $T$ has uniform descent
for $n\geqq d$ . If $k(T)$ is finite, we say that $T$ has almost uniform descent.

We will see, in Lemma (2.3), that $k_{n}(T)$ is also the dimension of the cokernel
of the map induced by $T$ from $N(T^{n+2})/N(T^{n+1})$ to $N(T^{n+1})/N(T^{n})$ . Thus, some
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