Uniform ascent and descent of bounded operators

By Sandy GRABINER(1)

(Received Feb. 4, 1980) (Revised Oct. 6, 1980)

1. Introduction.

In this paper we study the structure and perturbation theory of certain classes of bounded operators on a Banach space. These classes contain the semi-Fredholm operators, and also most of the generalizations of Fredholm operators which appear in the literature. For a bounded operator T, our study focuses on the sequences of ranges, $\{R(T^n)\}$, and of null-spaces, $\{N(T^n)\}$, and on the analogous sequences for small or compact perturbations of T. We are particularly interested in the spaces

(1.1)
$$R(T^{\infty}) = \bigcap_{n} R(T^{n}) \quad \text{and} \quad N(T^{\infty}) = \bigcup_{n} N(T^{n}),$$

and the analogous spaces for perturbations of T. The results we prove will be similar to some results which have been useful in spectral theory [21], [12], in the structure theory of Banach algebras [10], [23], and in the study of automatic continuity [13], [22].

If T is a bounded linear operator on the Banach space X, then, for each nonnegative integer n, T induces a linear transformation from the vector space $R(T^n)/R(T^{n+1})$ to the space $R(T^{n+1})/R(T^{n+2})$. We will let $k_n(T)$ be the dimension of the null space of the induced map and let

$$(1.2) k(T) = \sum_{n=0}^{\infty} k_n(T).$$

The following definition describes the classes of operators we will study.

DEFINITION (1.3). If there is a nonnegative integer d for which $k_n(T)=0$ for $n \ge d$ (i. e., if the induced maps are isomorphisms for $n \ge d$), we say that T has eventual uniform descent; and, more precisely, that T has uniform descent for $n \ge d$. If k(T) is finite, we say that T has almost uniform descent.

We will see, in Lemma (2.3), that $k_n(T)$ is also the dimension of the cokernel of the map induced by T from $N(T^{n+2})/N(T^{n+1})$ to $N(T^{n+1})/N(T^n)$. Thus, some

⁽¹⁾ Research partially supported by National Science Foundation grant MCS 76-0 7000 A01.