J. Math. Soc. Japan Vol. 34, No. 1, 1982

Interpolation, trivial and non-trivial homomorphisms in H^{\sim}

By Eric Alan GERBER¹⁾ and Max L. WEISS

(Received July 4, 1980)

1. Introduction.

Let D be the open unit disc in the complex plane. We assume that the reader is somewhat familiar with the theory of $H^{\infty} = H^{\infty}(D)$ as a function algebra (see [4]) including Hoffman's paper [6] on the parts of H^{∞} .

We recall Carleson's fundamental characterization of interpolating sequences for H^{∞} [1]. In terms of the *pseudo hyperbolic* metric, $\chi(z, w) = |z-w|/|1-\bar{z}w|$, a sequence $\{z_n\}$ in D (possibly finite) is interpolating if it is *uniformly separated*, that is

$$\inf_{n} \prod_{k \neq n} \chi(z_k, z_n) > 0.$$

Garnett [3] found a characterization of interpolating sequences, which is more geometric in nature. It is stated in terms of the concept of a *Carleson* measure, namely, a finite measure μ on D for which there exists a constant Ksuch that $\mu(S_{\theta,h}) \leq Kh$ for every set of the form $S_{\theta,h} = \{re^{i\varphi} : 0 < 1 - r < h, |\varphi - \theta| \leq h/2\}$ (equivalently, for all sufficiently small h).

THEOREM (Garnett). Let $\{z_n\}$ be a separated sequence in D, that is, one for which $\inf_{n \neq k} \chi(z_n, z_k) > 0$. Let μ be the measure on D assigning point mass $1 - |z_n|$ to z_n for each n and 0 elsewhere. Then, $\{z_n\}$ is interpolating if and only if μ is a Carleson measure.

Note that the condition that $\{z_n\}$ be separated is a natural (and simple) one since every uniformly separated sequence is necessarily separated.

It was Hoffman [5], [6] who characterized the Gleason parts of the maximal ideal space \mathcal{M} of H^{∞} as being either singleton points or analytic discs and who saw the connection with interpolating sequences. A homomorphism in \mathcal{M} is *non-trivial* (its part is an analytic disc) or *trivial* (a one point part) corresponding to whether it lies in the closure in \mathcal{M} of some interpolating sequence or not.

¹⁾ Some of the results of this paper form a portion of this author's doctoral thesis (1978) submitted to the University of California, Santa Barbara.