Closed *-derivations on compact groups

By Hiroshi NAKAZATO

(Received May 22, 1980)

§]1. Introduction and preliminaries.

Unbounded derivations have recently become one of the most important branches of the theory of C^* -algebras. Several authors obtained general results concerning the relation between closed *-derivations and strongly continuous one-parameter groups of *-automorphisms (cf. [3], [4], [10]).

S. Sakai ([11, Proposition 1.17]) proved that a non-zero closed derivation δ in C(T) (T: the unit circle) commuting with the rotation group $\{\theta_i\}_{i \in \mathbb{R}}$ of T is a scalar multiple of the infinitesimal generator of $\{\theta_i\}_{i \in \mathbb{R}}$.

In this paper we present a similar result for closed *-derivations commuting with the left translation group on arbitrary compact groups.

A linear map δ in a C*-algebra A is said to be a derivation if it satisfies the following condition:

(i) the domain $D(\delta)$ of δ is a dense subalgebra of A and $\delta(fg) = \delta(f)g + f\delta(g)$ (f, $g \in D(\delta)$). A derivation δ is said to be a *-derivation if it satisfies:

(ii) $f \in D(\delta) \Rightarrow f^* \in D(\delta)$ and $\delta(f^*) = \delta(f)^*$.

Throughout this paper, G will denote a compact group. Let C(G) be the C*-algebra of all complex-valued continuous functions on G. Suppose that $\{g_t\}_{t\in R}$ is a continuous one-parameter subgroup of G. We define $\{\tau_t\}_{t\in R}$ by the equation $\tau_t(f)(x)=f(xg_t)$ $(f\in C(G), x\in G, t\in R)$. Then $\{\tau_t\}_{t\in R}$ is a strongly continuous one-parameter group of *-automorphisms of C(G). Let δ be the infinite-simal generator of $\{\tau_t\}_{t\in R}$. Then it is well-known that δ is a closed *-derivation in C(G) with domain $D(\delta)$ which is a dense *-subalgebra of C(G). Further we define the left translation group $\{L_u\}_{u\in G}$ by the equation $L_u(f)(x)=f(u^{-1}x)$ $(f\in C(G), u, x\in G)$. Then it is clear that $L_u\tau_t=\tau_t L_u, L_u(D(\delta))=D(\delta)$ and $L_u\delta=\delta L_u$ $(u\in G, t\in R)$.

Our goal in this paper is to prove that the converse is true, that is, we have the following theorem.

THEOREM. Let G be a compact group. Suppose that δ is a closed *-derivation in C(G) commuting with the left translation group $\{L_u\}_{u\in G}$, that is, $L_u(D(\delta))$ $=D(\delta)$, $L_u\delta=\delta L_u$ ($u\in G$). Then there exists a continuous one-parameter subgroup $\{g_t\}_{t\in \mathbb{R}}$ of G such that δ is the infinitesimal generator of the strongly continuous