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\S 1. Introduction and preliminaries.

Unbounded derivations have recently become one of the most important
branches of the theory of $C^{*}$-algebras. Several authors obtained general results
concerning the relation between closed $*$-derivations and strongly continuous
one-parameter groups of $*$-automorphisms (cf. [3], [4], [10]).

S. Sakai ([11, Proposition 1.17]) proved that a non-zero closed derivation $\delta$

in $C(T)$ ( $T$ : the unit circle) commuting with the rotation group $\{\theta_{t}\}_{t\in R}$ of $T$ is
a scalar multiple of the infinitesimal generator of $\{\theta_{t}\}_{t\in R}$ .

In this paper we present a similar result for closed $*$-derivations commuting
with the left translation group on arbitrary compact groups.

A linear map $\delta$ in a $C^{*}$-algebra $A$ is said to be a derivation if it satisfies
the following condition:

(i) the domain $D(\delta)$ of $\delta$ is a dense subalgebra of $A$ and $\delta(fg)=\delta(f)g+f\delta(g)$

$(f, g\in D(\delta))$ . A derivation $\delta$ is said to be a $*$-derivation if it satisfies:
(ii) $f\in D(\delta)\subset\Rightarrow f^{*}\in D(\delta)$ and $\delta(f^{*})=\delta(f)^{*}$ .
Throughout this paper, $G$ will denote a compact group. Let $C(G)$ be the

$C^{*}$-algebra of all complex-valued continuous functions on $G$ . Suppose that $\{g_{t}\}_{t\in R}$

is a continuous one-parameter subgroup of $G$ . We define $\{\tau_{t}\}_{t\in R}$ by the equa-
tion $\tau_{t}(f)(x)=f(xg_{t})$ $(f\in C(G), x\in G, t\in R)$ . Then $\{\tau_{t}\}_{t\in R}$ is a strongly con-
tinuous one-parameter group of $*$-automorphisms of $C(G)$ . Let $\delta$ be the infinite-
simal generator of $\{\tau_{t}\}_{t\in R}$ . Then it is well-known that $\delta$ is a closed $*$-deriva-
tion in $C(G)$ with domain $D(\delta)$ which is a dense $*$-subalgebra of $C(G)$ . Further
we define the left translation group $\{L_{u}\}_{u\in G}$ by the equation $L_{u}(f)(x)=f(u^{-1}x)$

$(f\in C(G), u, x\in G)$ . Then it is clear that $L_{u}\tau_{t}=\tau_{t}L_{u},$ $L_{u}(D(\delta))=D(\delta)$ and $ L_{u}\delta$

$=\delta L_{u}(u\in G, t\in R)$ .
Our goal in this paper is to prove that the converse is true, that is, we

have the following theorem.
THEOREM. Let $G$ be a compact group. Suppose that $\delta$ is a closed $*$-denva-

tion in $C(G)$ commuting with the lefl translation grouP $\{L_{u}\}_{u\in G}$ , that is, $L_{u}(D(\delta))$

$=D(\delta),$ $L_{u}\delta=\delta L_{u}(u\in G)$ . Then there exists a continuous one-parameter subgroup
$\{g_{t}\}_{t\in R}$ of $G$ such that $\delta$ is the infinitesimal generator of the strongly continuous


