A generalization of Roberts-Tannaka duality theorem

By Kiyoshi IKESHOJI

(Received May 13, 1980)

1. Introduction.

Let $\{\mathfrak{M}, G, \gamma\}$ be a covariant system, that is, G is a locally compact group and $\gamma: G \to \operatorname{Aut}(\mathfrak{M})$ is a homomorphism of G into the group of *-automorphisms of a von Neumann algebra \mathfrak{M} with the following continuity: $G \ni t \to \gamma_t x \in \mathfrak{M}$ is continuous for each $x \in \mathfrak{M}$ with respect to the σ -weak topology on \mathfrak{M} . By definition in [4], a *Hilbert space in* \mathfrak{M} is a closed subspace \Re of \mathfrak{M} such that

- (i) y*x is a scalar multiple of the identity for every $x, y \in \Re$ and
- (ii) for every non-zero $a \in \mathfrak{M}$, there exists an $x \in \mathbb{R}$ with $ax \neq 0$.

The inner product (x | y) in \Re is given by y*x. If a *Hilbert space* \Re in \Re is globally invariant under γ , $\gamma_t(\Re) \subseteq \Re$ for all $t \in G$, we have

$$(\gamma_t x | \gamma_t y) = \gamma_t (y^* x) = y^* x = (x | y)$$
 for every $x, y \in \mathbb{R}, t \in G$.

Hence the restriction of γ to \Re is a unitary representation of G. We denote it by π_{\Re} . Let $\mathcal{H}_r(\mathfrak{M})$ be the collection of all *Hilbert spaces in* \mathfrak{M} globally invariant under γ . Let \mathfrak{M}^r denote the fixed point algebra $\{x \in \mathfrak{M} : \gamma_t(x) = x \text{ for all } t \in G\}$ of \mathfrak{M} under γ and $\operatorname{Aut}(\mathfrak{M} | \mathfrak{M}^r) = \{\rho \in \operatorname{Aut}(\mathfrak{M}) : \rho(x) = x \text{ for all } x \in \mathfrak{M}^r\}$.

Under the above situation the following Roberts-Tannaka duality theorem was obtained and was used as a basic tool in [1].

Theorem 1. Assume that \mathfrak{M}^{γ} is properly infinite and G is compact. If each irreducible subrepresentation of $\{\gamma, \mathfrak{M}\}$ is unitarily equivalent to some $\pi_{\mathfrak{K}}$, $\mathfrak{K} \in \mathcal{H}_{\gamma}(\mathfrak{M})$, then every $\sigma \in \operatorname{Aut}(\mathfrak{M} | \mathfrak{M}^{\gamma})$ leaving every member $\mathfrak{K} \in \mathcal{H}_{\gamma}(\mathfrak{M})$ globally invariant must be of the form γ_s for some $s \in G$.

In this short note we generalize the above theorem to the case of arbitrary locally compact groups. This problem is suggested in [3].

The author would like to thank Dr. Nakagami for his encouragement.

2. A duality theorem.

Before stating the theorem, we show the following lemma.

LEMMA. If $\sigma \in \operatorname{Aut}(\mathfrak{M} | \mathfrak{M}^7)$ and $\Re \in \mathcal{H}_7(\mathfrak{M})$ which is globally invariant under σ , each globally γ -invariant closed subspace \Re' of \Re is also globally invariant