The critical values of certain zeta functions associated with modular forms of half-integral weight

By Goro SHIMURA*

(Received March 24, 1980)

Introduction.

The main theme of this paper is the algebraicity of two types of numbers occurring in connection with modular forms. One is the values at certain integers or half-integers of a Dirichlet series

$$D(s, f, g) = \sum_{n=1}^{\infty} a(n)b(n)n^{-s}$$

obtained from two modular forms

$$f(z) = \sum_{n=1}^{\infty} a(n) e^{2\pi i n z}$$
 and $g(z) = \sum_{n=0}^{\infty} b(n) e^{2\pi i n z}$,

and the other is the inner product $\langle f, g \rangle$ of f and g, when they have the same weight. These have been treated in our previous papers [12], [13], and [14] for the forms f and g of integral weight. Therefore the present investigation concerns the cases in which either or both of f and g have half-integral weight.

To describe the nature of the problems as well as of the results, we let m'and m denote the weights of f and g, respectively, which are positive elements of $2^{-1}Z$. If m=m', there is a well known relation between $\langle f, g \rangle$ and the residue of D(s, f, g) at s=m, and therefore the second object has a character similar to the first one. Setting this residue aside, we restrict, for some natural reasons, the study of the values of D(s, f, g) to the case m < m'. If we exclude the case in which both m and m' are integers, there are three cases:

- I. $m \in \mathbb{Z}$ and $m' \in \mathbb{Z}$,
- II. $m \in \mathbb{Z}$ and $m' \notin \mathbb{Z}$,
- III. $m \in \mathbb{Z}$ and $m' \in \mathbb{Z}$.

The first case was treated by Sturm [17], [18]. Therefore we consider here the remaining two cases. Let m'=k/2 with an odd integer k, and assume that f

^{*} Supported by NSF Grant MCS 7903631.