Comparison theorems for functional differential equations with deviating arguments

By Takaŝi KUSANO and Manabu NAITO

(Received Nov. 5, 1979)

Introduction.

We consider the functional differential equations with deviating arguments

$$(L_n^+, F, g)$$
 $L_n x(t) + F(t, x(g(t))) = 0,$

$$(L_n, F, g)$$
 $L_n x(t) - F(t, x(g(t))) = 0,$

where $n \ge 2$ and L_n denotes the disconjugate differential operator

$$(1) L_n = \frac{1}{p_n(t)} \frac{d}{dt} \frac{1}{p_{n-1}(t)} \frac{d}{dt} \cdots \frac{d}{dt} \frac{1}{p_1(t)} \frac{d}{dt} \frac{\cdot}{p_0(t)}.$$

We always assume that:

- (L-1) p_i , $g:[a,\infty)\to R$ are continuous, $p_i(t)>0$, $0\le i\le n$, and $g(t)\to\infty$ as $t\to\infty$;
- (L-2) $F: [a, \infty) \times R \rightarrow R$ is continuous, and $\operatorname{sgn} F(t, x) = \operatorname{sgn} x$ for each $t \in [a, \infty)$.

We introduce the notation:

(2)
$$D^{0}(x; p_{0})(t) = \frac{x(t)}{p_{0}(t)},$$

$$D^{i}(x; p_{0}, \dots, p_{i})(t) = \frac{1}{p_{i}(t)} \frac{d}{dt} D^{i-1}(x; p_{0}, \dots, p_{i-1})(t), \quad 1 \leq i \leq n.$$

The operator L_n can then be rewritten as

$$L_n=D^n(\cdot; p_0, \dots, p_n)$$
.

The domain $\mathcal{D}(L_n)$ of L_n is defined to be the set of all functions $x: [T_x, \infty) \to R$ such that $D^i(x; p_0, \dots, p_i)$, $0 \le i \le n$, exist and are continuous on $[T_x, \infty)$. By a proper solution of equation $(L_n^+, F, g)[(L_n^-, F, g)]$ is meant a function $x \in \mathcal{D}(L_n)$ which satisfies $(L_n^+, F, g)[(L_n^-, F, g)]$ for all sufficiently large t and $\sup\{|x(t)|: t \ge T\} > 0$ for every $T \ge T_x$. We make the standing hypothesis that equations