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Let us begin with the following simple example of a parabolic unilateral
problem

$\partial u/\partial t-\Delta u\geqq 0$ , $ u\geqq\Psi$

in $\Omega\times(0, T$] (0.1)
$(\partial u/\partial t-\Delta u)(u-\Psi)=0$

$u=0$ on $\Gamma\times(0, T$] (0.2)

$u(x, 0)=u_{0}(x)\geqq\Psi(x)$ in $\Omega$ . (0.3)

Here $\Omega$ is a domain in $R^{N}$ with sufficiently smooth boundary $\Gamma$, and $\Psi$ is a
function such that $\Psi\in W^{2.p}(\Omega)$ and $\Psi|_{\Gamma}\leqq 0$ . We wish to make $P$ small; how-
ever, assume

$1<p<2<P^{*}=pN/(N-p)$ . (0.4)

In view of Sobolev’s imbedding theorem it follows that

$W^{2.p}(\Omega)\subset H^{1}(\Omega)\subset L^{p^{\prime}}(\Omega)$ , $p^{\prime}=p/(p-1)$ . (0.5)

Let $L_{q}$ be the realization of -A in $L^{q}(\Omega)$ under the Dirichlet boundary condition,
and $M_{q}$ be the multivalued mapping defined by

$D(M_{q})=$ { $u\in L^{q}(\Omega):u\geqq\Psi a$ . $e$ . in $\Omega$}, (0.6)

$M_{q}u=\{g\in L^{q}(\Omega):g\leqq 0a$ . $e$ . in $\Omega$ ,

$g(x)=0$ if $u(x)>\Psi(x)$}. (0.7)

Note that $M_{2}=\partial I_{K}$ where $I_{K}$ is the indicatrix of the closed convex set $K=D(M_{2})$ .
The problem $(0.1)-(0.3)$ is formulated in $L^{p}(\Omega)$ as

$du(t)/dt+(L_{p}+M_{p})u(t)\ni 0$ (0.8)

$u(0)=u_{0}$ . (0.9)

This work was partly supported by Grant.in-Aid for Scientific Research 454029.


