Regular embeddings of C^*-algebras in monotone complete C^*-algebras

By Masamichi HAMANA

(Received Nov. 27, 1978)
(Revised May 10, 1979)

Introduction.

Let A be a unital C^*-algebra and $A_{s.a.}$ the self-adjoint part of A. If each bounded increasing net (resp. sequence) in $A_{s.a.}$ has a supremum then A is said to be monotone (resp. monotone σ-) complete. [In the literature, e.g., [10, 16, 20], the adjective “monotone (resp. monotone σ-) complete” is employed as a synonym for “monotone (resp. monotone σ-) complete”, but in this paper we will use it in a different sense (cf. Definition 1.2).] As was shown by J. D. M. Wright [22], each unital C^*-algebra A possesses a unique regular σ-completion, i.e., a monotone σ-complete C^*-algebra \hat{A} which contains A as a C^*-subalgebra and satisfies the following properties:

i) $\hat{A}_{s.a.}$ itself is a unique monotone σ-closed subspace of $\hat{A}_{s.a.}$ which contains $A_{s.a.}$;

ii) each x in $\hat{A}_{s.a.}$ is the supremum in $\hat{A}_{s.a.}$ of \{a $\in A_{s.a.}$; $a \leq x$\}; and

iii) whenever a subset \mathcal{F} of $A_{s.a.}$ has a supremum x in $A_{s.a.}$, then x remains the supremum of \mathcal{F} in $\hat{A}_{s.a.}$.

On the other hand the present author proved in [6] that each unital C^*-algebra A has a unique injective envelope, which will be written as $I(A)$, i.e., a minimal injective C^*-algebra containing A as a C^*-subalgebra. In this paper we give a monotone complete version of the above J. D. M. Wright’s result by embedding A in its injective envelope $I(A)$ (Theorem 3.1). Namely it is shown that the monotone closure \overline{A} of A in $I(A)$ is a monotone complete C^*-algebra which satisfies the above properties i), ii) and iii) with \hat{A} replaced by \overline{A} and moreover “monotone σ-” in i) replaced by “monotone”. We call \overline{A} the regular monotone completion of A. To see that \overline{A} satisfies ii) we consider the family of all unital C^*-algebras which contain A as a C^*-subalgebra and satisfy ii) (called “regular extensions” of A) and we show that, instead of \overline{A}, a maximal regular extension of A, written \tilde{A}, is realized as a monotone closed C^*-subalgebra of $I(A)$, hence that $\overline{A} \subset \tilde{A}$ satisfies ii). By the construction we have the canonical inclusions $A \subset \hat{A} \subset \overline{A} \subset \tilde{A} \subset I(A)$; however it remains open.