Cartan subgroups of a Lie group

By Morikuni GOTO

(Received June 10, 1978)

§ 1. Introduction.

By an analytic group and by an analytic subgroup of a Lie group, we mean a connected Lie group and a connected Lie subgroup, respectively. An analytic subgroup and the corresponding Lie algebra will be denoted by the same capital script and capital Roman letter, respectively. For example, if \mathcal{L} is an analytic group and \mathcal{L} an analytic subgroup of \mathcal{L} , then L will denote the Lie algebra of \mathcal{L} and G the subalgebra of L corresponding to \mathcal{L} .

Let \mathcal{Q} be an analytic group, and H a Cartan subalgebra of G. We shall call \mathcal{H} a Cartan subgroup of \mathcal{Q} . Any Cartan subgroup of \mathcal{Q} is closed in \mathcal{Q} . For the closure of a subset \mathcal{M} of a topological space, we adopt the notation $\overline{\mathcal{M}}$. In this paper, we shall prove the following theorems:

THEOREM 5. Let \mathcal{L} be an analytic group, and \mathcal{Q} an analytic subgroup of \mathcal{L} . Then there exists a Cartan subgroup \mathcal{H} of \mathcal{Q} such that $\overline{\mathcal{Q}} = \overline{\mathcal{H}} \mathcal{Q}$. This implies, in particular, if \mathcal{Q} is non-closed, then so is \mathcal{H} .

THEOREM 6. Let \mathcal{G} be an analytic subgroup of $GL(n, \mathbf{R})$. For any Cartan subgroup \mathcal{H} of \mathcal{G} we have $\overline{\mathcal{G}} = \overline{\mathcal{H}} \mathcal{G}$.

REMARK. In Theorem 5 and 6, we can replace $\overline{\mathcal{G}} = \overline{\mathcal{H}}\mathcal{G}$ by $\overline{\mathcal{G}} = \overline{Z(\mathcal{H})}\mathcal{G}$ where $Z(\mathcal{H})$ is the center of \mathcal{H} . Indeed, since \mathcal{H} is nilpotent, we have that $\overline{\mathcal{H}} = \overline{Z(\mathcal{H})}\mathcal{H}$.

Let L be a Lie algebra. A Cartan subalgebra of L is, by definition, the eigenspace corresponding to 0 of any regular inner derivation of L. Also we know that a subalgebra H of L is Cartan if and only if H is nilpotent and coincides with its normalizer.

In [2], Gantmacher proved that for complex semisimple Lie algebras we can define Cartan subalgebras using inner automorphisms rather than derivations. We shall generalize the result of Gantmacher, and get a new definition of Cartan subalgebras. Let \mathcal{L} be an analytic group. For $a \in \mathcal{L}$, we denote by Ad a the (inner) automorphism of L induced by the inner automorphism $x \mapsto axa^{-1}$ of the group \mathcal{L} .

THEOREM 1. Let \mathcal{L} be an analytic group, and let x be a regular element of \mathcal{L} , i.e., the multiplicity of the eigenvalue one of Ad x is the smallest. Let H be the eigenspace corresponding to the eigenvalue one of Ad x.