Weakly closed dihedral 2-subgroups in finite groups

By Hiroshi FUKUSHIMA

(Received June 13, 1978) (Revised Sept. 27, 1978)

1. Introduction.

Let S be a Sylow 2-subgroup of a finite group G. A subgroup T of S is said to be weakly closed in S with respect to G if T has the following property; "Whenever $T \subseteq S$, $g \in G$, and $T^g \subseteq S$, then $T^g = T$." Let φ be the natural homomorphism from G onto G/O(G). Then we set $Z^*(G) = \varphi^{-1}(Z(G/O(G)))$. The object of this paper is to prove the following results.

THEOREM I. Let S be a Sylow 2-subgroup of a finite group G. Suppose a dihedral subgroup T of S is weakly closed in S (with respect to G). Then one of the following holds;

(i) $T \not\subseteq \langle Z(T)^{G} \rangle$,

(ii) $Z(T) \subseteq Z^*(G)$,

(iii) |T|=4, and Sylow 2-subgroups of $\langle T^{g} \rangle$ are T or dihedral of order 8 or $\langle T^{g} \rangle / O(\langle T^{g} \rangle) \cong U_{3}(4)$,

(iv) |T|=8, and Sylow 2-subgroups of $\langle T^{g} \rangle$ are dihedral or semi-dihedral,

(v) $|T| \ge 16$, and Sylow 2-subgroups of $\langle Z(T)^G \rangle$ are dihedral or semi-dihedral or are wreath products.

THEOREM II. Let S be a Sylow 2-subgroup of a finite group G. Suppose a generalized quaternion subgroup Q of S is weakly closed in S. Let $\langle z \rangle = Z(Q)$. Then one of the following holds;

(i) $Q \not\subseteq \langle z^G \rangle$,

(ii) $z \in Z^*(G)$,

(iii) $\langle z^{g} \rangle / O(\langle z^{g} \rangle)$ is M_{11} , M_{12} , \hat{M}_{12} , $L_{3}(q)$, $U_{3}(q)$, $G_{2}(q)$, or ${}^{3}D_{4}(q)$, q odd.

THEOREM III. Let S be a Sylow 2-subgroup of a finite group G. Suppose a semi-dihedral subgroup D of S is weakly closed in S. Then $Z(D) \subseteq Z^*(G)$ or Sylow 2-subgroups of $\langle Z(D)^G \rangle$ are dihedral or semi-dihedral.

2. Preliminaries.

LEMMA 2.1. Suppose a subgroup A of a Sylow p-subgroup P of G is conjugate to a normal subgroup B of P in G. Then there exists an element $g \in G$ such that $A^g = B$ and $N_P(A)^g \subseteq P$.