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Introduction.

Let Z,, be the metacyclic group with presentation

{x, y|xP=y'=1, yxy'=x},

where p is an odd integer, ¢ an odd prime, (c—1, p)=1, and ¢ is a primitive
g™ root of 1 mod p. Denote by O, the group of homotopy spheres, and by
©.,.(0r) the group of homotopy spheres which bound parallelizable manifolds.
Then Petrie [5] proved that for each Y&0,, ,(0r) there is a free smooth
action of Z,, on 2. This theorem will be generalized as follows in this paper.

THEOREM. Let Z, denote a cyclic group of order h and assume h=2"h’,

2, h)=1. If n takes 0,1, or 2 and (h’, pq)=1, then for each X <0, ,(0r)
there is a free smooth action Z,XZ, on X.

Our theorem follows immediately from the following two propositions.

PROPOSITION 5.7. There exists a free smooth action of Z,,XZ, on some
homotopy sphere X <O, ,(0x). Here (h, pg)=1.

PROPOSITION 6.1. Let m be any integer=1. Assume h=2"h' where n=0, 1,
or 2 and (W', pg)=1. If Y€0O,p., admits a free Z, XZy-action, then Y 4 2%,
admits a free Z, X Zy-action, where ¥, generates O p,(07).

Our methods are analogous to those in Petrie [5]. §§ 1-4 are preliminaries
for Proposition 5.7 which is proved in §5. In §6, we prove Proposition 6.1 by
applying a theorem of Browder [1].
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1. Construction of a Z, X Z,-action.

We set n=Z2,,XZ, for the groups Z,, and Z, in Introduction, where
(h, p9)=1. We denote by =, m, the cyclic subgroups generated by =x, y
respectively. Let Z,, be a cyclic group of order ph. Since (p, h)=1, there
exist integers m and n such that mp-+nh=1, and an isomorphism of Z,, to



