Free group actions of $Z_{p,q} \times Z_h$ on homotopy spheres

By Yoshinobu KAMISHIMA

(Received March 2, 1978)

Introduction.

Let $Z_{p,q}$ be the metacyclic group with presentation

$$\{x, y \mid x^p = y^q = 1, yxy^{-1} = x^\sigma\}$$

where p is an odd integer, q an odd prime, $(\sigma-1, p)=1$, and σ is a primitive q^{th} root of 1 mod p. Denote by Θ_n the group of homotopy spheres, and by $\Theta_n(\partial \pi)$ the group of homotopy spheres which bound parallelizable manifolds. Then Petrie [5] proved that for each $\Sigma \in \Theta_{2q-1}(\partial \pi)$ there is a free smooth action of $Z_{p,q}$ on Σ . This theorem will be generalized as follows in this paper.

THEOREM. Let Z_h denote a cyclic group of order h and assume $h=2^nh'$, (2, h')=1. If n takes 0, 1, or 2 and (h', pq)=1, then for each $\Sigma \in \Theta_{2q-1}(\partial \pi)$ there is a free smooth action $Z_{p,q} \times Z_h$ on Σ .

Our theorem follows immediately from the following two propositions.

PROPOSITION 5.7. There exists a free smooth action of $Z_{p,q} \times Z_h$ on some homotopy sphere $\Sigma \in \Theta_{2q-1}(\partial \pi)$. Here (h, pq)=1.

PROPOSITION 6.1. Let m be any integer ≥ 1 . Assume $h=2^nh'$ where n=0, 1, or 2 and (h', pq)=1. If $\Sigma \in \Theta_{4m+1}$ admits a free $Z_{p,q} \times Z_h$ -action, then $\Sigma \sharp \Sigma_0$ admits a free $Z_{p,q} \times Z_h$ -action, where Σ_0 generates $\Theta_{4m+1}(\partial \pi)$.

Our methods are analogous to those in Petrie [5]. §§ 1-4 are preliminaries for Proposition 5.7 which is proved in § 5. In § 6, we prove Proposition 6.1 by applying a theorem of Browder [1].

I would like to thank Professor Y. Kitada, Professor H. Suzuki and Professor M. Nakaoka for their useful suggestions and criticism.

1. Construction of a $Z_{p,q} \times Z_h$ -action.

We set $\pi = Z_{p,q} \times Z_h$ for the groups $Z_{p,q}$ and Z_h in Introduction, where (h, pq) = 1. We denote by π_p , π_q the cyclic subgroups generated by x, y respectively. Let Z_{ph} be a cyclic group of order ph. Since (p, h) = 1, there exist integers m and n such that mp + nh = 1, and an isomorphism of Z_{ph} to