A counterexample to a conjecture of Whitehead and Volodin-Kuznetsov-Fomenko

By Mitsuyuki OCHIAI

(Received Feb. 13, 1978)
(Revised Sept. 11, 1978)

In the study of 3-manifolds, to construct an algorithm of recognizing the standard 3-sphere S^3 among all 3-manifolds is a very important problem. The first basic work of this problem was done by Whitehead in 1936 [6], who discovered that certain (but not all) Heegaard diagrams for S^3 had a rather special geometric property (see Conjecture A in the paper). Later Volodin-Kuznetsov-Fomenko conjectured that Heegaard diagrams for S^3 are reducible except for the canonical one. But Birman states in [2] that “nobody has succeeded in verifying such an assertion between 1935 and 1977, or producing a counterexample”. Most recently Homma-Ochiai-Takahashi [3] proved that the conjecture is really true for the case of genus two. But in this paper we give a counterexample for the case of genus four. The Volodin-Kuznetsov-Fomenko-Whitehead algorithm is closely related with the algorithm to determine whether a knot is trivial or not and so our counterexample is constructed as a branched covering space over a trivial 5-bridge knot.

The author wishes to express his hearty thanks to Prof. T. Homma and Prof. H. Terasaka.

1. Reducible Heegaard diagrams.

Let M be a closed orientable 3-manifold and W_1, W_2 solid tori of genus n and $h : \partial W_2 \rightarrow \partial W_1$ a homeomorphism of the boundary surfaces. Then the triple $(W_1, W_2; h)$ is called a Heegaard splitting of genus n for M when $M=W_1 \cup_h W_2$.

A properly embedded disk D in a solid torus W of genus n is called a meridian-disk of W if $cl(W-N(D, W))$ is a solid torus of genus $n-1$, and a collection of mutually disjoint n meridian-disks D_1, \ldots, D_n in W is called a complete system of meridian-disks of W if $cl(W- \bigcup_{i=1}^{n} N(D_i, W))$ is a 3-ball. We call a collection of mutually disjoint $(n+1)$ meridian-disks in W an extended complete system of meridian-disks of W provided that any n subcollection is a complete system of meridian-disks of W.