Automorphic forms and the periods of abelian varieties

By Goro SHIMURA*

(Received July 11, 1978)

There are three interrelated topics to be treated in this paper:

I. Monomial relations between the periods of abelian varieties with complex multiplication;

II. The derivatives of automorphic forms of arithmetic type;

III. The non-vanishing of the first cohomology group of a discrete subgroup of $SU(n, 1)$.

To describe our results, let A be an abelian variety of dimension g defined over \mathbf{Q}, whose endomorphism-algebra contains a totally imaginary quadratic extension K of a totally real algebraic number field F such that $[F: \mathbf{Q}]=g$. Throughout the paper, we denote by \mathbf{Q} the algebraic closure of the rational number field \mathbf{Q} embedded in the complex number field C. Let Φ be the representation of K on the space of holomorphic 1-forms on A. Then Φ consists of g injections τ of K into C, and for each τ, there is a \mathbf{Q}-rational 1-form ω_τ on A on which an element x of K acts as a scalar x^τ. As shown in [13], there is a constant $p(\tau, \Phi)$ such that

$$\int_c \omega_\tau \sim \pi \cdot p(\tau, \Phi) \quad \text{for all 1-cycles } c \text{ on } A. \tag{0.1}$$

Here and henceforth, we write $a \sim b$ for two complex numbers a and b if $a/b \in \mathbf{Q}$. The first principal aim of this paper is to prove monomial relations between $p(\tau, \Phi)$ for various Φ with the same K, as well as relations between such “periods” for a given K and those for an extension of K. The constant $p(\tau, \Phi)$ can be obtained from a Hilbert modular function f with respect to a congruence subgroup of $GL_2(F)$ as follows. Take the variable $z=(z_1, \cdots, z_g)$ on the product \mathfrak{H}_1^g of g copies of the upper half plane \mathfrak{H}_1. Let $\Phi=\sum_{\nu=1}^g \tau_\nu$ and $w_\nu=(w^\tau_1, \cdots, w^\tau_g)$ with an element w of K such that $\text{Im}(w^\tau_\nu)>0$ for all ν. Then

$$\left(\frac{\partial f}{\partial z_\nu}(w)\right) \sim \pi \cdot p(\tau_\nu, \Phi)^2 \quad (\nu=1, \cdots, g), \tag{0.2}$$

if f is \mathbf{Q}-rational, i.e., if f is the quotient of two Hilbert modular forms with

* Supported by NSF Grant MCS76-11376.