The maximal ideal space of certain algebra $H^{\infty}(m)$

By Kazuo Kishi

(Received Feb. 28, 1977) (Revised Oct. 1, 1977)

§1. Introduction.

Let A be a uniform algebra on a compact Hausdorff space X and m a complex homomorphism of A. We suppose that m has a unique representing measure μ_m on X and that the Gleason part P(m) containing m consists of more than one point. We denote by $H^{\infty}(m)$ the w^* closure of A in $L^{\infty}(d\mu_m)$, and by I^{∞} the ideal $\{f \in H^{\infty}(m) : \varphi(f) = 0 \text{ for all } \varphi \in P(m)\}$ of $H^{\infty}(m)$. In [10], Merrill proved that $H^{\infty}(m)$ is maximal as a w^* closed subalgebra of $L^{\infty}(d\mu_m)$ if and only if $I^{\infty} = \{0\}$. In this paper we shall deal with the case when $I^{\infty} \neq \{0\}$.

In §2 we shall state some preliminaries and two lemmas. In §3 we shall study some properties of the maximal ideal space of the Banach algebra $H^{\infty}(m)$ with $I^{\infty} \neq \{0\}$. In §4 we shall study some properties of a Gleason part P(m)such that $A \mid P(m) = H^{\infty}(D)$ (for the precise meaning see §4). In §5 we shall give some examples relating to §3 and §4.

§2. Preliminaries and lemmas.

For a complex commutative Banach algebra B, let B^{-1} be the set of all invertible elements of B. Let M(B) be the maximal ideal space of B endowed with the Gelfand topology, let \hat{f} and \hat{B} be the Gelfand transforms of $f (\subseteq B)$ and B respectively, and let $\Gamma(B)$ be the Šilov boundary of B.

Let X be a compact Hausdorff space, and let $C(X)(C_R(X))$ be the complex (real) Banach algebra of all complex (real) valued continuous functions on X. Let A be a *uniform algebra* on X, i. e., A is a uniformly closed subalgebra of C(X) which contains the function 1 and separates the points of X. A representing measure for $\varphi \in M(A)$ is a probability measure μ on X such that $\varphi(f)$ $= \int f d\mu$ for all $f \in A$. We denote by $\sup \mu$ the closed support of a measure μ . When $\varphi \in M(A)$ has a unique representing measure, sometimes we use the same symbol φ to denote its representing measure. Given φ and ψ in M(A), we set

$$d(\varphi, \phi) = \sup \{ |\varphi(f)| : f \in A, \|f\| = \sup |f| \leq 1, \phi(f) = 0 \}$$