A second order theory of ordinal numbers with Ackermann-type reflection schema

By Masazumi HANAZAWA

(Received Aug. 20, 1976)

§1. Introduction.

The underlying logic of the ordinal number theory OA given in [3] is a weakened second order logic. Adopting the standard second order logic, we can obtain a stronger theory. We shall denote it by OA^+ . In this paper we first show the consistency of OA^+ by interpreting it in ZF. In fact, OA^+ is interpretable in various theories which are much weaker than ZF. Roughly speaking, OA^+ is interpretable in those theories that have the first uncountable ordinal ω_1 and all subsets of $\omega_1 \times \omega_1$. I do not know whether OA^+ is strictly weaker than those theories. Next, we give a theory which is somewhat simple and whose strength is equal to that of OA^+ .

§ 2. The theory OA^+ .

- 2.1. The language of OA^+ (denoted by L_0).
- (a) Individual variables: x_0, x_1, \cdots .
- (b) Predicate variables: P_0, P_1, \cdots .
- (c) Predicate constants: *=*, *<*, O*.
- (d) Logical symbols: $7, \land, \exists$.
- 2.2. The axioms and the inferences of OA^+ .

(a) The axioms and the inferences of the standard second order logic and the equality axiom: $a=b\leftrightarrow \forall P[Pa\rightarrow Pb]$.

(b) The following four:

$$Oa \land \forall x [x < a \leftrightarrow x < b] \rightarrow a = b;$$

$$Oa \land x < a \land y < x \rightarrow y < a;$$

$$\forall P[\forall x [Ox \rightarrow [(\forall y < x)Py \rightarrow Px]] \rightarrow \forall x [Ox \rightarrow Px]];$$

$$Oa_1 \land \dots \land Oa_n \land \forall x [A(x) \rightarrow Ox \land (\forall y < x)A(y)] \rightarrow \exists y [Oy \land \forall z [z < y \leftrightarrow A(z)]],$$

where A(x) contains neither the predicate constant O nor free variables except $a_1 \cdots a_n, x$.