J. Math. Soc. Japan Vol. 29, No. 3, 1977

On the irreducible characters of the finite unitary groups

By Noriaki KAWANAKA*

(Received April 22, 1976)

Introduction.

Let k be a finite field of q elements, and k_2 the quadratic extension of k. Let σ be the automorphism of the finite general linear group $GL_n(k_2)$ defined by

$$(x_{ij})^{\sigma} = (x_{ji}^q)^{-1}$$

for any element $(x_{ij})_{1 \le i,j \le n}$ of $GL_n(k_2)$. The group $U_n(k_2)$ of σ -fixed elements of $GL_n(k_2)$ is called the finite unitary group over k_2 . So far, the irreducible complex characters of $U_n(k_2)$ have been determined only for small n (see Ernola [4] and Nozawa [8], [9]), while those of $GL_n(k_2)$ have been determined completely by J. A. Green [7]. The purpose of the present paper is to give a method by which one can construct the irreducible complex characters of $U_n(k_2)$ using those of $GL_n(k_2)$, at least if the characteristic of k is not 2. As an application, we also obtain a parametrization of the irreducible characters of $U_n(k_2)$ which is dual to a known parametrization of the conjugacy classes.

Let χ be an irreducible character of $GL_n(k_2)$ which is fixed by σ , i.e. satisfies $\chi(x) = \chi(x^{\sigma})$ for all $x \in GL_n(k_2)$. Then, by a well-known elementary lemma, χ can be extended to an irreducible character $\tilde{\chi}$ of the semi-direct product $AGL_n(k_2)$ of $GL(k_2)$ with the group $A = \{1, \sigma\}$. Our main theorem is:

Assume that char $(k) \neq 2$. Let χ be a σ -fixed irreducible character of $GL_n(k_2)$, and $\tilde{\chi}$ an extension of χ to an irreducible character of $AGL_n(k_2)$. Then, there exists a unique irreducible character ψ_{χ} of $U_n(k_2)$ which depends only on χ and satisfies

$$\tilde{\chi}(\sigma x) = \varepsilon(\tilde{\chi}) \psi_{\chi}(n(x)) \qquad (x \in GL_n(k_2)),$$

where $\varepsilon(\tilde{\chi}) = \pm 1$ and n(x) is an arbitrary element of $U_n(k_2)$ conjugate to $x^{\sigma}x$ in $GL_n(k_2)$. Moreover, the correspondence $\chi \rightarrow \phi_{\chi}$ is a bijection between the set of σ -fixed irreducible characters of $GL_n(k_2)$ and the set of irreducible characters of $U_n(k_2)$.

This paper consists of five sections. §1 is a recollection of some known

^{*} This research was supported in part by the Sakkokai Foundation.