Unbounded representations of symmetric *-algebras

By Atsushi INOUE

(Received July 8, 1975) (Revised July 7, 1976)

§1. Introduction.

In [16], R. T. Powers began studying a representation of a *-algebra as an algebra of unbounded operators on a Hilbert space. A class of symmetric unbounded operator algebras (called symmetric #-algebras, EC^* -algebras, EW^* algebras, EC^* -algebras and EW^* -algebras) have been studied by P.G. Dixon [3, 4], the author [9, 10, 11, 12] and others.

In this paper we shall study unbounded representations of symmetric *algebras. Let A be a symmetric *-algebra and let π be a representation of A on a Hilbert space \mathfrak{H} . Then we divide π into the following three types. If $\pi(x)$ is a bounded operator for all $x \in A$, then π is called a bounded representation. If π is unitarily equivalent to the direct sum of bounded representations of A, then π is called a weakly unbounded representation of A. If π has not any bounded subrepresentation of π , then π is called a strictly unbounded representation. In § 3 we obtain the following theorems.

THEOREM 3.11. If π is closed, then it is unitarily equivalent to the direct sum of strongly cyclic closed representations.

THEOREM 3.13. If π is closed, then there are a weakly unbounded closed representation π_1 of A and a strictly unbounded closed representation π_2 of A such that π is unitarily equivalent to the direct sum of π_1 and π_2 .

In §4, we shall consider the relation of positive linear functionals and representations. Let f be a positive linear functional on A. By Gelfand-Segal construction there is a strongly cyclic closed representation π_f of A on a Hilbert space \mathfrak{H}_f with a strongly cyclic vector ξ_f such that $f(x) = (\pi_f(x)\xi_f|\xi_f)$ for all $x \in A$. We divide f into the following three types. An f is said to be relatively bounded if π_f is bounded. An f is said to be approximately relatively bounded if an f is contained in the weak closure of $\{g; f \ge g \ge 0 \text{ and } g \text{ is relatively bounded}\}$. An f is said to be strictly relatively unbounded if there is not any non-zero positive linear functional g such that $f \ge g$ and g is relatively bounded. The primary purpose of this section is to show the following two theorems.

• THEOREM 4.4. There exists a decomposition of f such that $f=f_1+f_2, f_1$ is