On a construction of a recurrent potential kernel by mean of time change and killing

By Yoichi OSHIMA

(Received Feb. 14, 1976)

§ 1. Introduction.

Let E be a locally compact Hausdorff space with countable base, E be the σ -field of Borel subsets of E and $X=(\Omega, \mathcal{F}, \mathcal{F}_t)_{t\geq 0}$, $(X_t)_{t\geq 0}$, $(\theta_t)_{t\geq 0}$, $(P^x)_{x\in E}$) be a Hunt process on (E, E). The constructions of the (weak) potential kernel of X were given by many authors ([6], [9], [11], [13]). In this paper we shall give a construction by mean of time change and killing. Let $A=(A_t)_{t\geq 0}$ be a non-trivial non-negative continuous additive functional of X such that $A_t<\infty$ a.s. for all $t<\infty$. Let $K_{P,C}^0$ and $G_{P,C}^0$ be the resolvent of the time changed process corresponding to the additive functional A^C and the potential kernel of the subprocess of X corresponding to the multiplicative functional $(e^{-PA_t^C})_{t\geq 0}$, respectively, where A^C is defined by

$$A_t^C = \int_0^t I_C(X_s) dA_s$$

for a Borel subset C of E. Then for a suitably chosen Borel subset C of E there exists a potential kernel K_C of $K_{1,C}^0$ restricted to $C \times C$ and the kernel defined by

$$K(x, dy) = G_{1,C}^{0}(x, dy) + K_{1,C}^{0}K_{C}G_{1,C}^{0}(x, dy)$$

is a potential kernel of X. If there exists a dual Hunt process \hat{X} of X relative to the invariant measure μ of X then the kernels K and \hat{K} defined as above by A^c and \hat{A}^c are in dual relative to μ , where \hat{A} is the dual continuous additive functional of A. By these method, we can construct, explicitly, the potential kernel of one dimensional non-singular diffusion processes.

§ 2. Construction of a potential kernel.

Throughout in this paper we shall assume that X is a recurrent Hunt process on (E, \mathcal{E}) , that is, it satisfies the following equivalent conditions (Azema-Duflo-Revuz [1], Blumenthal-Getoor [5] problems II.4.17-4.20).