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Introduction.

In this paper we study compact complex affine manifolds. Let A(n, C) be
the group of the affine transformations on C" and let I be a subgroup of
A(n, C) such that 1) I" acts on C™ properly discontinuously and freely 2) C"/I’
is compact. A compact complex manifold C*/I" is called a compact complex
affine manifold. For n=2, such manifolds have been classified by Vitter [6],
Fillmore and Scheuneman [2] and Suwa [5]. The purpose of this paper is to
study the complex manifold C"/I" under certain conditions. Put

a « 1 *
N(n,C):{AeA(n,C)‘A:( > a:< >,aEC”}.
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In section 1 we show that if I’ is contained in N(n, C), then every non-zero
holomorphic vector field on C*/I" has no zero point and the Lie algebra a of
all holomorphic vector fields on C"/I" is solvable and of dimension =n. In
section 2 we study the case when [’ is contained in N(n, C) and the Lie alge-
bra a is of n-dimension. In this case we show that there exist a simply con-
nected complex nilpotent Lie subgroup G of N(n, C) which contains I’ and a
biholomorphic map ¢: C"—G such that @¢(y(z))=7é(z) for any y=I' and any
zeC". In particular, we see that there is a biholomorphic map é:C*/I'—-I'\G.
In section 3 we show that if /' is contained in N(n, C) and C"/I has a
Kéhler metric, then C"/I" is biholomorphic to a complex torus. In section 4
we consider the case when [’ is an abelian subgroup of A(n, C) and prove
that C*/I" is biholomorphic to a complex torus.
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§1. Preliminaries.

Let A(n, C) be the group of all affine transformations on C*. The group
A(n, C) is represented by the group of all matrices of the form A:(g 6{

where a=(a;;)eGL(n, C) and a=(a;)eC" is a column vector. Let N(n, C)



