On compact complex affine manifolds

By Yusuke SAKANE

(Received Feb. 12, 1976)

Introduction.

In this paper we study compact complex affine manifolds. Let A(n, C) be the group of the affine transformations on C^n and let Γ be a subgroup of A(n, C) such that 1) Γ acts on C^n properly discontinuously and freely 2) C^n/Γ is compact. A compact complex manifold C^n/Γ is called a compact complex affine manifold. For n=2, such manifolds have been classified by Vitter [6], Fillmore and Scheuneman [2] and Suwa [5]. The purpose of this paper is to study the complex manifold C^n/Γ under certain conditions. Put

$$N(n, \mathbf{C}) = \left\{ A \in A(n, \mathbf{C}) \mid A = \begin{pmatrix} a & \alpha \\ 0 & 1 \end{pmatrix}, a = \begin{pmatrix} 1 & * \\ 0 & \cdot \end{pmatrix}, \alpha \in \mathbf{C}^n \right\}.$$

In section 1 we show that if Γ is contained in N(n, C), then every non-zero holomorphic vector field on \mathbb{C}^n/Γ has no zero point and the Lie algebra \mathfrak{a} of all holomorphic vector fields on \mathbb{C}^n/Γ is solvable and of dimension $\leq n$. In section 2 we study the case when Γ is contained in N(n, C) and the Lie algebra \mathfrak{a} is of *n*-dimension. In this case we show that there exist a simply connected complex nilpotent Lie subgroup G of N(n, C) which contains Γ and a biholomorphic map $\phi: \mathbb{C}^n \to G$ such that $\phi(\gamma(z)) = \gamma \phi(z)$ for any $\gamma \in \Gamma$ and any $z \in \mathbb{C}^n$. In particular, we see that there is a biholomorphic map $\overline{\phi}: \mathbb{C}^n/\Gamma \to \Gamma \setminus G$. In section 3 we show that if Γ is contained in N(n, C) and \mathbb{C}^n/Γ has a Kähler metric, then \mathbb{C}^n/Γ is biholomorphic to a complex torus. In section 4 we consider the case when Γ is an abelian subgroup of A(n, C) and prove that \mathbb{C}^n/Γ is biholomorphic to a complex torus.

The auther would like to express his thanks to Professors Y. Matsushima, S. Murakami and H. Ozeki for helpful discussions.

§1. Preliminaries.

Let A(n, C) be the group of all affine transformations on C^n . The group A(n, C) is represented by the group of all matrices of the form $A = \begin{pmatrix} a & \alpha \\ 0 & 1 \end{pmatrix}$ where $a = (a_{ij}) \in GL(n, C)$ and $\alpha = (\alpha_i) \in C^n$ is a column vector. Let N(n, C)