On the signature invariants of a non-singular complex sesqui-linear form

By Takao MATUMOTO

(Received Dec. 15, 1975)

The purpose of this note is to make clear the relationship between two types of signatures defined for a non-singular real bilinear or complex sesquilinear form, and then, to get a result in the algebraic topology.

Let $l: V \times V \to C$ be a complex sesqui-linear form of finite dimension; a matrix representation $x^* \varGamma y$ is used and a symbol "*" stands for the transpose of the conjugate of the matrix or the vector. Let t be an indeterminant which may be thought either as an automorphism or as a variable ranging over the complex numbers. We call $\Gamma(t) = \Gamma - \Gamma^* t$ an Alexander matrix and det $\Gamma(t)$ the Alexander polynomial. The first series of signatures consists of the signature τ_ω of the hermitian form $l_\omega = x^* \varGamma_\omega y$ with $\varGamma_\omega = (1/2)\{(1-\overline{\omega})\varGamma + (1-\omega)\varGamma^*\}$. Since $\tau_\xi = \text{sign}\,(1-\text{Re}\,\xi)\tau_\omega$ with $\omega = -(1-\xi)/(1-\overline{\xi})$, the only interesting case is when ω is on the unit circle, where \varGamma_ω reduces to $\varGamma_\omega = (1/2)(1-\overline{\omega})\varGamma(\omega)$.

A hermitian form $l_+=x^*Ay$ where $A=(1/2)(\Gamma+\Gamma^*)$ and a skew-hermitian form $l_-=x^*(-Q)y$ where $Q=(1/2)(\Gamma^*-\Gamma)$ are considered; then $\Gamma=A-Q$ and of course $2A=\Gamma_{-1}$. If the form l is non-singular, then the matrix $P=(\Gamma^*)^{-1}\Gamma$ gives an automorphism t of l, i. e., $P^*\Gamma P=\Gamma$, and hence of l_ω , l_+ and l_- . The eigen-values α of the automorphism t associate another series of signatures $\sigma_{(\alpha)}$ which are defined by the hermitian form l_+ ; where l_+ is restricted to the α -root subspaces $V_\alpha=\{x\in V\,;\, (t-\alpha)^kx=0 \text{ for some } k\}$. Note that $\dim V_\alpha>0$ if and only if α is a root of the Alexander polynomial and we have a generalized Cayley transformation Q(I+P)=A(I-P). Moreover, we can remark that, if $\alpha\neq\pm 1$, $\sigma_{(\alpha)}=\mathrm{sign}(V_\alpha\,;\, l_+)$ is equal to $\mathrm{sign}(\mathrm{Im}\,\alpha)\,\mathrm{sign}(V_\alpha\,;\, il_-)$. (Cf. § 1, case (b).) We define $\sigma_{(-1\pm0i)}$ by $\pm \mathrm{sign}(V_{-1}\,;\, il_-)$.

THEOREM 1 (Complex case). For $\omega = \exp(i\varphi)$ and $\alpha = \exp(i\theta)$ with $-\pi < \varphi < \pi$ and $-\pi < \theta < \pi$,

(*)
$$\tau_{\omega} = \operatorname{sign} (\operatorname{Im} \omega) \{ \sum_{|\alpha|=1, \alpha \neq -1} \operatorname{sign} (\varphi - \theta) \sigma_{(\alpha)} + \sigma_{(-1+0i)} \}$$

holds, provided either the automorphism t is semi-simple, or ω is not a root of the Alexander polynomial.

REMARK. If $\omega = -1$, (*) is replaced by (*') sign $(l_+) = \sum \sigma_{(\alpha)}(|\alpha| = 1, \alpha \neq -1)$. The formula, (*) or (*'), does not always hold. The excluded cases will be