On linearizable irreducible projective representations of finite groups

By G. KARPILOVSKY

(Received June 30, 1975)

Let G be a finite group and K an arbitrary field. Yamazaki ([4], Theorem 1) proved that there exists a finite central group extension of G by which all "linearizable" projective representations of G are linearized (cf. Section 1). This result motivates consideration of the following problem. Given a finite group G and an arbitrary field K of characteristic 0, what is the number of equivalence classes of irreducible linearizable projective representations of G over G? The aim of this paper is to give the solution of this problem. As a corollary we obtain the group theoretical characterization of the number of equivalence classes of irreducible projective representations of G over G0 over G1. Where G2 is an algebraically closed field of characteristic 0, or the real number field.

I. Preliminaries.

All groups in this paper are assumed to be finite.

NOTATION. K is any field and $K^*=K-\{0\}$.

GL(V) is the group of all nonsingular linear transformations of a finite dimensional vector space V over K.

A K-character is a character of a linear representation of a group G over K. $K*1_V$ is the centre of GL(V) where 1_V denotes the identity mapping of V onto itself.

 $PGL(V)=GL(V)/K*1_V$ is the group of projective transformations of the projective space P(V) associated to V.

 π is the natural projection of GL(V) onto PGL(V).

|S| is the order of the set S.

G' is the derived group of G.

 $\operatorname{Hom}(G, K^*)$ is the multiplicative group of all linear characters (one-dimensional linear representations) of the group G over K.

An ordered pair (G^*, ϕ) of a group G^* and a surjective homomorphism $\psi: G^* \to G$ is called a central group extension of the group G if the kernel $\operatorname{Ker} \psi$ of ψ is included in the centre $Z(G^*)$ of the group G^* .

If T is a permutation group acting on the set S then S/T is the quotient