C^{∞} -approximation of continuous ovals of constant width

By Shûkichi TANNO

(Received May 26, 1975)

§1. Introduction.

Let M be an oval (i.e., a closed convex curve) in a Euclidean 2-space E^2 . For a point x of M a straight line l passing through x is called a supporting line at x if M is contained in one of the half planes determined by l. If Mis a C^1 -curve, then tangent lines are supporting lines. M is said to have constant width, if the distance between each pair of parallel supporting lines is constant. Examples of continuous ovals of constant width are Reuleaux triangles, Sallee constructions (cf. [7], and also B. B. Peterson [4]), and so on.

We prove C^{∞} -approximation theorem:

THEOREM A. Let M be a continuous oval of constant width H in E^2 . Then, for any positive number δ , we can construct a C^{∞} -oval M^* of constant width H in the δ -neighborhood of M in E^2 .

THEOREM B. In Theorem A, if M is symmetric with respect to a straight line m in E^2 , then M^* can be constructed so that M^* is symmetric with respect to m.

A generalization of an oval of constant width to higher dimension is a hypersurface of constant width in a Euclidean *n*-space E^n . If M is a continuous oval of constant width in $E^2 \subset E^n$, which is symmetric with respect to the x^1 axis, then one gets a continuous hypersurface of constant width in E^n as its revolution hypersurface with respect to the x^1 -axis in E^n .

By Theorem B we obtain

THEOREM C. If a continuous hypersurface M of constant width H is a revolution hypersurface in E^n , then for any positive number δ , we can construct a revolution C^{∞} -hypersurface M^* of constant width H in the δ -neighborhood of M in E^n .

In the last section we mension about twin hypersurfaces which are generalizations of hypersurface of constant width.