On the abstract linear evolution equations in Banach spaces

By Atsushi YAGI

(Received March 25, 1975)

§0. Introduction.

The objective of the present paper is to construct the evolution operator associated with an evolution equation

(E)
$$\frac{du}{dt} + A(t)u = f(t)$$

in a Banach space X. Here u=u(t) and f(t) are functions on [0, T] to X and A(t) is a function on [0, T] to the set of linear operators acting in X. We assume (E) is of parabolic type, that is, -A(t) are all infinitesimal generators of analytic semi-groups of bounded linear operators on X.

This problem has been considered already in many papers, for instance, [1], [2] and [3]. The main assumption of [1] is that the inequality

$$\|A(t)^{\rho} dA(t)^{-1} / dt\| \le N \tag{0.1}$$

is valid with some constant $\rho \in (0, 1]$; and those of [2] are that the inequality of the form

$$\|A(t)(\lambda - A(t))^{-1}(dA(t)^{-1}/dt)A(t)(\lambda - A(t))^{-1}\| = \|\partial/\partial t(\lambda - A(t))^{-1}\| \le N/|\lambda|^{\rho}$$
(0.2)

is valid with some constant $\rho \in (0, 1]$ and $dA(t)^{-1}/dt$ is Hölder continuous. In [3] the following conditions are assumed: the domain of $A(t)^{\rho}$ is independent of t for some $\rho = 1/m$ where m is a positive integer, and $A(t)^{\rho}A(0)^{-\rho}$ is Hölder continuous in t.

In this paper we assume the inequality

$$\|A(t)(\lambda - A(t))^{-1}dA(t)^{-1}/dt\| \le N/|\lambda|^{\rho}$$
(0.3)

with a constant $\rho \in (0, 1]$. This inequality (0.3) is slightly weaker than the inequality (0.1), for (0.1) implies (0.3) by the equation

$$A(t)(\lambda - A(t))^{-1}dA(t)^{-1}/dt = A(t)^{1-\rho}(\lambda - A(t))^{-1}A(t)^{\rho}dA(t)^{-1}/dt$$

and the estimation

$$||A(t)^{1-\rho}(\lambda - A(t))^{-1}|| \leq M/|\lambda|^{\rho}$$
.