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Abstract. We prove existence and completeness of the wave operators
and the invariance principle for first order systems even though the per-
turbation does not have compact support and no unique continuation pro-
perty is assumed.

\S 1. Introduction.

The systems considered are of the form

(1.1) $Hu=E^{-1}(\sum_{j=1}^{n}A^{j}D_{j}u+Bu)$ ,

where $u$ is an $m$ component vector valued function of $x\in E^{n},$ $A^{j}(x),$ $E(x)$ and
$B(x)$ are $m\times m$ matrix valued measurable functions of $x$ and $D_{j}=\partial/i\partial x_{j}$ . For
the unperturbed system we take

(1.2) $H_{0}u=E_{0^{-1}}\sum_{j=1}^{n}A_{0^{j}}D_{j}u$ ,

where $E_{0}$ and the $A_{0^{j}}$ are constant matrices. We make the following assump-
tions:

1. The matrices $E_{0},$ $A_{0^{j}},$ $E,$ $A^{j}$ are hermitian.
2. $H_{0}$ is elliptic and $H$ is uniformly elliptic.
3. $E_{0}$ is positive definite and $E$ is uniformly positive definite.
4. The $A^{j}$ are bounded and uniformly continuous.
5. $E$ is bounded.
6. The distribution derivatives $D_{j}A^{j}$ satisfy

(1.3) $B-B^{*}=\sum_{j=1}^{n}D_{j}A^{j}$ ,

where $B^{*}$ is the hermitian adjoint of $B$ .
7. $B(x)$ is locally square integrable and

(1.4) $\sup_{x}\int_{|x-y|<\delta}|B(y)|^{2}|x-y|^{2-n}dy\rightarrow 0$ as $\delta\rightarrow 0$ .


