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For any locally compact (Hausdorff) space X, we denote by C(X) and
Cy(X) the Banach algebra of all bounded continuous functions on X and the
ideal of those feC(X) which vanish at infinity, respectively. Thus the con-
jugate space Cy(X)’ of Co(X) can be identified with the space M(X) of all
bounded regular measures on X. Now let X, -+, Xy be finitely many locally
compact spaces, and X the product space thereof. Given a Banach space B,
we consider

Vi(X)QB=Cy(X)&® - RC(Xx)® B,

the (complete) projective tensor product of Cy(X)), --+, Co(Xy), and B (cf. [10]).
Notice that the Banach space V(X )®B can be regarded as a linear subspace
of C(X: B), the space of all B-valued bounded continuous functions on X.

The main purpose of this paper is to prove that, under a certain condition
on B’, the space (V(X )®B)’ has a natural decomposition which is similar to
the well-known decomposition M(X)=M (X)+ M, X). As a special case of
this result it is shown that M(X) is norm-dense in V,(X)’ if and only if all
except at most one X; are residual (i.e., contain no perfect sets). We also
give an application of the latter result to the study of Fourier restriction
algebras.

Let VO(X)®B be as above. Then VO(X)@)B has a natural Banach V(X)-
module structure, where V(X)=C(X,)® - @C(Xy)CC(X):

(P =g(F(x) ($V(X), FEVy(X)RB, xeX).

We define the product ¢P < (Vo(X)QB) of a ¢=V(X) and a Pe(V,(X)& B)
by setting
(F,$Py=(¢F, Py YFeV,(X)®B.

Notice that the imbedding V(X)CV(X) is isometric. We also define the X-
support of P, Sx(P), to be the smallest closed subset S of X such that {F, P}
=0 whenever Fe VO(X)@)B and F=0 on some neighborhood of S (cf. [5; p. 31]).
DEFINITIONS. Let P(V,(X)QB)’ be given.
(a) We call P point-mass-like if Sx(P) is either a singleton or empty.



