J. Math. Soc. Japan Vol. 28, No. 1, 1976

Tensor products of C(X)-spaces and their conjugate spaces

By Sadahiro SAEKI

(Received Aug. 28, 1974)

For any locally compact (Hausdorff) space X, we denote by C(X) and $C_0(X)$ the Banach algebra of all bounded continuous functions on X and the ideal of those $f \in C(X)$ which vanish at infinity, respectively. Thus the conjugate space $C_0(X)'$ of $C_0(X)$ can be identified with the space M(X) of all bounded regular measures on X. Now let X_1, \dots, X_N be finitely many locally compact spaces, and X the product space thereof. Given a Banach space B, we consider

$$V_0(X) \widehat{\otimes} B = C_0(X_1) \widehat{\otimes} \cdots \widehat{\otimes} C_0(X_N) \widehat{\otimes} B,$$

the (complete) projective tensor product of $C_0(X_1)$, \cdots , $C_0(X_N)$, and B (cf. [10]). Notice that the Banach space $V_0(X) \otimes B$ can be regarded as a linear subspace of C(X:B), the space of all *B*-valued bounded continuous functions on *X*.

The main purpose of this paper is to prove that, under a certain condition on B', the space $(V_0(X) \widehat{\otimes} B)'$ has a natural decomposition which is similar to the well-known decomposition $M(X) = M_c(X) + M_d(X)$. As a special case of this result it is shown that M(X) is norm-dense in $V_0(X)'$ if and only if all except at most one X_j are residual (i.e., contain no perfect sets). We also give an application of the latter result to the study of Fourier restriction algebras.

Let $V_0(X) \widehat{\otimes} B$ be as above. Then $V_0(X) \widehat{\otimes} B$ has a natural Banach V(X)module structure, where $V(X) = C(X_1) \widehat{\otimes} \cdots \widehat{\otimes} C(X_N) \subset C(X)$:

$$(\phi F)(x) = \phi(x)F(x)$$
 $(\phi \in V(X), F \in V_0(X) \widehat{\otimes} B, x \in X).$

We define the product $\phi P \in (V_0(X) \widehat{\otimes} B)'$ of a $\phi \in V(X)$ and a $P \in (V_0(X) \widehat{\otimes} B)'$ by setting

$$\langle F, \phi P \rangle = \langle \phi F, P \rangle \quad \forall F \in V_0(X) \widehat{\otimes} B.$$

Notice that the imbedding $V_0(X) \subset V(X)$ is isometric. We also define the Xsupport of P, $S_X(P)$, to be the smallest closed subset S of X such that $\langle F, P \rangle$ =0 whenever $F \in V_0(X) \otimes B$ and F=0 on some neighborhood of S (cf. [5; p. 31]).

DEFINITIONS. Let $P \in (V_0(X) \widehat{\otimes} B)'$ be given.

(a) We call P point-mass-like if $S_X(P)$ is either a singleton or empty.