Pseudo-differential operators of multiple symbol and the Calderon-Vaillancourt theorem

By Hitoshi KUMANO-GO

(Received Nov. 12, 1973)

Introduction.

In the present paper we shall define a class $S_{\lambda,\rho,\delta}^{\tilde{m}_{\nu}}$ of multiple symbol as an extension of the class $S_{\rho,\delta}^{m,m^{\prime}}$ of double symbol in our previous paper [6], where $\widetilde{m}_{\nu} = (m_{1}, \cdots , m_{\nu})$ and $\widetilde{m}_{\nu}' = (m_{0}^{\prime}, m_{1}^{\prime}, \cdots , m_{\nu}^{\prime})$ are real vectors and $m_{j}' \geq 0, \ j = 0, \ 1, \ \cdots, \ \nu.$ The multiple symbol has the form $p(x^{0}, \tilde{\xi}^{\nu}, \tilde{x}^{\nu}) = p(x^{0}, \xi^{1}, \xi^{2})$ $x^{1}, \cdots, \xi^{\nu}, x^{\nu}$ and the associated pseudo-differential operator $P=p(X^{0},$ $D_{\tilde{x}^{\nu}},$ $\tilde{X}^{\nu})$ is defined as the map $P:\mathcal{B}\rightarrow\mathcal{B}$ by using oscillatory integrals developed in Kumano-go [7] and Kumano-go-Taniguchi [8], where \mathcal{B} denotes the set of C^{∞} -functions with bounded derivatives of any order in $R^{\mathit{n}}.$ Then, the (single) symbol $\sigma(P)(x, \xi)$ is given by $\sigma(P)(x, \xi)=e^{-ix\cdot\xi}P(e^{ix\cdot\xi}).$

We shall give a theorem which represents $\sigma(P)(x, \xi)$ by the oscillatory integral of the multiple symbol $p(x^0,\tilde{\xi}^{\nu},\tilde{x}^{\nu})$ and the asymptotic expansion formula for $\sigma(P)(x, \xi)$ will be given. As an application we shall prove the Calderón-Vaillancourt theorem in [3] (see also [11]) for the L^{2} -continuity of pseudo-differential operators of class $S_{\lambda,\delta,\delta}^{0}(0\leq\delta<1)$ only by symbol calculus. Another application is found in Tsutsumi [10], where our theorem is used to construct the fundamental solution $U(t)$ for a degenerate parabolic pseudodifferential operator in the class $S_{\rho,\delta}^{0}$ with a parameter t.

We believe that our theorem will be useful when we try to solve operatorvalued integral equations with pseudo-differential operators as their kernels.

§ 1. Oscillatory integrals.

DEFINITION 1.1. We say that a C^{*}-function $p(\eta, y)$ in $R_{\eta, y}^{2n}$ belongs to a class ${\mathcal A}^{m}_{\boldsymbol{\delta},\tilde{\tau}}$ for $-\infty$ $<$ m $<$ ∞ , ${\delta}$ $<$ 1 and a sequence ${\tilde{\tau}}$; 0 \leq τ_{1} \leq τ_{2} \leq \cdots \leq τ_{l} \leq \cdots , when for any multi-index α , β we have

$$
(1.1) \t\t\t |p_{(\beta)}^{(\alpha)}(\eta, y)| \leq C_{\alpha,\beta} \langle \eta \rangle^{m+\delta|\beta|} \langle y \rangle^{\tau_{|\beta|}}
$$

for a constant $C_{\alpha,\beta}$ and set $\mathcal{A}_{\delta}=\bigcup_{-\infty\leq m<\infty}\bigcup_{\sharp}\mathcal{A}_{\delta}^{\pi}$, where $p_{(\beta)}^{(\alpha)}=\partial_{\eta}^{\alpha}D_{y}^{\beta}p$, $D_{y_{j}}=$ $-i\partial/\partial y_{j}, \ \partial_{\gamma_{j}}=\partial/\partial\eta_{j}, j=1, \cdots, n, \ \langle y\rangle=\sqrt{1+|y|^{2}}, \ \langle \eta\rangle=\sqrt{1+|\eta|^{2}} \ \ (\text{cf.} \ \ [7], \ [8]).$