Pseudo-differential operators of multiple symbol and the Calderón-Vaillancourt theorem

By Hitoshi KUMANO-GO

(Received Nov. 12, 1973)

Introduction.

In the present paper we shall define a class $S_{\lambda,\rho,\delta}^{\tilde{m}_{\nu};\tilde{m}_{\nu}'}$ of multiple symbol as an extension of the class $S_{\rho,\delta}^{m,m'}$ of double symbol in our previous paper [6], where $\tilde{m}_{\nu} = (m_1, \dots, m_{\nu})$ and $\tilde{m}_{\nu}' = (m'_0, m'_1, \dots, m'_{\nu})$ are real vectors and $m'_j \ge 0, j = 0, 1, \dots, \nu$. The multiple symbol has the form $p(x^0, \tilde{\xi}^{\nu}, \tilde{x}^{\nu}) = p(x^0, \xi^1, x^1, \dots, \tilde{\xi}^{\nu}, x^{\nu})$ and the associated pseudo-differential operator $P = p(X^0, D_{\tilde{x}^{\nu}}, \tilde{X}^{\nu})$ is defined as the map $P: \mathcal{B} \to \mathcal{B}$ by using oscillatory integrals developed in Kumano-go [7] and Kumano-go-Taniguchi [8], where \mathcal{B} denotes the set of C^{∞} -functions with bounded derivatives of any order in \mathbb{R}^n . Then, the (single) symbol $\sigma(P)(x, \xi)$ is given by $\sigma(P)(x, \xi) = e^{-ix\cdot\xi}P(e^{ix\cdot\xi})$.

We shall give a theorem which represents $\sigma(P)(x, \xi)$ by the oscillatory integral of the multiple symbol $p(x^0, \xi^{\tilde{\nu}}, \tilde{x}^{\nu})$ and the asymptotic expansion formula for $\sigma(P)(x, \xi)$ will be given. As an application we shall prove the Calderón-Vaillancourt theorem in [3] (see also [11]) for the L^2 -continuity of pseudo-differential operators of class $S^0_{\lambda,\delta,\delta}$ ($0 \le \delta < 1$) only by symbol calculus. Another application is found in Tsutsumi [10], where our theorem is used to construct the fundamental solution U(t) for a degenerate parabolic pseudodifferential operator in the class $S^0_{\rho,\delta}$ with a parameter t.

We believe that our theorem will be useful when we try to solve operatorvalued integral equations with pseudo-differential operators as their kernels.

§1. Oscillatory integrals.

DEFINITION 1.1. We say that a C^{∞} -function $p(\eta, y)$ in $R_{\eta,y}^{2n}$ belongs to a class $\mathcal{A}_{\delta,\tilde{\tau}}^{m}$ for $-\infty < m < \infty$, $\delta < 1$ and a sequence $\tilde{\tau}$; $0 \leq \tau_{1} \leq \tau_{2} \leq \cdots \leq \tau_{l} \leq \cdots$, when for any multi-index α , β we have

(1.1)
$$|p_{\beta}^{(\alpha)}(\eta, y)| \leq C_{\alpha,\beta} \langle \eta \rangle^{m+\delta|\beta|} \langle y \rangle^{\tau} |\beta|$$

for a constant $C_{\alpha,\beta}$ and set $\mathcal{A}_{\delta} = \bigcup_{-\infty < m < \infty} \bigcup_{\tilde{z}} \mathcal{A}_{\delta}^{\mathfrak{p}}, \tilde{z}$, where $p_{\langle\beta\rangle}^{\langle\alpha\rangle} = \partial_{\eta}^{\alpha} D_{y}^{\beta} p$, $D_{y_{j}} = -i\partial/\partial y_{j}, \ \partial_{\eta_{j}} = \partial/\partial \eta_{j}, \ j = 1, \cdots, n, \ \langle y \rangle = \sqrt{1 + |y|^{2}}, \ \langle \eta \rangle = \sqrt{1 + |\eta|^{2}} \ (\text{cf. [7], [8]}).$