On the characterization of complex projective space by differential equations

By David E. BLAIR

(Received April 18, 1973) (Revised Feb. 4, 1974)

§ 1. Introduction.

The existence of a non-trivial solution of certain differential equations on a Riemannian manifold often determines some geometric and topological properties of the manifold. For example in [5] M. Obata announced the following results.

THEOREM A (see also [4]). Let M^{n} be a complete connected Riemannian manifold of dimension $n \geq 2$. Then M^{n} admits a non-trivial solution f of

 $\nabla\overline{\nabla} f+kfg=0$, $k=const. > 0$

if and only if M^{n} is globally isometric to a Euclidean sphere S^{n} of radius $1/\sqrt{k}$.

THEOREM B. Let M^{n} be a complete connected, simply connected Riemannian manifold. Then M^{n} admits a non-trivial solution f of

 $(\nabla\nabla\omega)(Z, X, Y)+k(2\omega(Z)g(X, Y)+\omega(X)g(Y, Z)+\omega(Y)g(X, Z))=0$

where $\omega=df$ if and only if M^{n} is isometric to a Euclidean sphere of radius $1/\ \surd\ k$.

THEOREM C. Let M^{2n} be a complete connected, simply connected Kähler manifold. Then M^{2n} admits a non-trivial solution f of

 $4(\nabla\nabla\theta)(Z, X, Y)+c(2\theta(Z)G(X, Y)+\theta(X)G(Y, Z)+\theta(Y)G(X, Z))$

 $-\theta(\Delta X)\Omega(Y, Z)-\theta(\Delta Y)\Omega(X, Z)=0$, $c>0$

where $\theta=df$ if and only if M^{2n} is isometric to complex projective space PCⁿ with the Fubini-Study metric of constant holomorphic sectional curvature $\emph{c.}$

In [5] Obata gives a proof of Theorem A and an indication of the proofs of Theorems B and C. Our purpose here is to show the relation between Theorems B and C by deducing Theorem C from Theorem B in the case of Hodge manifolds.

In Theorem B, grad f is an infinitesimal projective transformation and we show that on an odd-dimensional sphere S^{2n+1} we can find such a vector field orthogonal to the distinguished direction of the contact structure on