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\S 1. Introduction.

The existence of a non-trivial solution of certain differential equations
on a Riemannian manifold often determines some geometric and topological
properties of the manifold. For example in [5] M. Obata announced the
following results.

THEOREM A (see also [4]). Let $M^{n}$ be a complete connected Riemannian
manifold of dimension $n\geqq 2$ . Then $M^{n}$ admits a non-trivial solution $f$ of

$\nabla\nabla f+kfg=0$ , $k=const$ . $>0$

if and only if $M^{n}$ is globally isometric to $a$ Euclidean sphere $S^{n}$ of radius $1/\sqrt{k}$.
THEOREM B. Let $M^{n}$ be a complete connected, simply connected Riemannian

manifold. Then $M^{n}$ admits a non-trivial solution $f$ of
$(\nabla\nabla\omega)(Z, X, Y)+k(2\omega(Z)g(X, Y)+\omega(X)g(Y, Z)+\omega(Y)g(X, Z))=0$

where $\omega=df$ if and only if $M^{n}$ is isometric to $a$ Euclidean sphere of radius
$1/\sqrt{k}$ .

THEOREM C. Let $M^{2n}$ be a complete connected, simply connected Kahler
manifold. Then $M^{2n}$ admits a non-trivial solution $f$ of

$4(\nabla\nabla\theta)(Z, X, Y)+c(2\theta(Z)G(X, Y)+\theta(X)G(Y, Z)+\theta(Y)G(X, Z)$

$-\theta(JX)\Omega(Y, Z)-\theta(JY)\Omega(X, Z))=0$ , $c>0$

where $\theta=df$ if and only if $M^{2n}$ is isometric to complex projective space $PC^{n}$

with the Fubini-Study metric of constant holomorphic sectional curvature $c$ .
In [5] Obata gives a proof of Theorem A and an indication of the proofs

of Theorems $B$ and C. Our purpose here is to show the relation between
Theorems $B$ and $C$ by deducing Theorem $C$ from Theorem $B$ in the case of
Hodge manifolds.

In Theorem $B$ , grad $f$ is an infinitesimal projective transformation and
we show that on an odd-dimensional sphere $S^{2n+1}$ we can find such a vector
field orthogonal to the distinguished direction of the contact structure on


