Martin boundary over an isolated singularity of rotation free density

By Mitsuru NAKAI

(Received June 25, 1973)

Consider a density P(z)dxdy on a Riemann surface R, i.e. a 2-form P(z)dxdy whose coefficients P(z) are nonnegative locally Hölder continuous functions of local parameters z = x + iy on R. Let δ be an isolated parabolic ideal boundary component of R. This means that there exists the base $\{\Omega^*\}$ of neighborhoods of the point δ in the Kerékjártó-Stoilow compactification of R such that each $\Omega = \Omega^* \cap R$ is an end of R, i.e. a subregion of R with compact analytic relative boundary $\partial\Omega$ and a single ideal boundary component δ . The parabolicity of δ is characterized by the parabolicity of the double $\hat{\Omega}$ of $\Omega = \Omega^* \cap R$ about $\partial\Omega$ for every $\Omega^* \in \{\Omega^*\}$. To describe a potential theoretic behavior of P at δ we introduce the P-elliptic dimension, dim_P δ , of δ as follows: Let $\mathcal{F}_P(\Omega)$ be the half module of nonnegative solutions u of the elliptic equation

$$\Delta u(z) = P(z)u(z) \qquad (i. e. d*du(z) = u(z)P(z)dxdy)$$

on Ω with continuously vanishing boundary values on $\partial\Omega$ for $\Omega = \Omega^* \cap R$ with $\Omega^* \in \{\Omega^*\}$. Since $\mathcal{F}_P(\Omega)$ are isomorphic to each other as half modules for all Ω (Ozawa [15, 16]), the common half module structure $\mathcal{F}_P(\delta)$ is determined only by δ and P. Then we define $\dim_P \delta$ to be the dimension of $\mathcal{F}_P(\delta)$, i.e. the minimal cardinal number of sets of generators of $\mathcal{F}_P(\delta)$. The simplest δ is the δ_0 which is represented as the origin z=0 of the punctured disk 0 < |z| < 1, i.e. there exists $\Omega^* \in \{\Omega^*\}$ such that Ω^* is represented as |z| < 1and $\Omega = \Omega^* \cap R$ as 0 < |z| < 1. The simplest density is $P \equiv 0$, i.e. $P(z) \equiv 0$ for every z. The P-elliptic dimension of δ with $P \equiv 0$ is in particular referred to as the harmonic dimension of δ .

Two opposite extreme cases of the study of the dual dependance of $\dim_P \delta$ on (δ, P) are $\delta \to \dim_P \delta$ with the simplest P, i.e. $P \equiv 0$, and $P \to \dim_P \delta$ with the simplest $\delta = \delta_0$. It is known that there exists δ such that the harmonic dimension $\dim_0 \delta$ of δ is either an arbitrary finite cardinal number n (Heins [4]), the countably infinite cardinal number \mathfrak{a} (Kuramochi [8]), for the cardinal number of continuum \mathfrak{c} (Constantinescu-Cornea [2]). These are examples of the study of $\delta \to \dim_P \delta$ with $P \equiv 0$. The starting point of the