J. Math. Soc. Japan Vol. 26, No. 2, 1974

Monodromy representations of homology of certain elliptic surfaces

By Takao SASAI

(Received Nov. 27, 1972) (Revised June 12, 1973)

Introduction.

In this paper we shall determine global monodromy representations of certain basic elliptic surfaces over a complex projective line $P^1(C)$. Such a surface has a following normal form (Kas [2]); Let $P^2(C)$ be a complex projective plane with homogeneous coordinate (x, y, z). We take two copies $W_0 = P^2(C) \times C_0$ and $W_1 = P^2(C) \times C_1$ of the product $P^2(C) \times C$ and form their union

$$W^{k} = W_{0} \cup W_{1}$$
 $(k = 1, 2, \cdots)$

by identifying $(x, y, z, u) \in W_0$ with $(x_1, y_1, z_1, u_1) \in W_1$ if and only if

 $u^{2k}x_1 = x$, $u^{3k}y_1 = y$, $z_1 = z$, $uu_1 = 1$.

Similarly we define

$$\Delta = C_0 \cup C_1,$$

where we identify $u \in C_0$ with $u_1 \in C_1$ if and only if $uu_1 = 1$. For a point $(\tau, \sigma) = (\tau_0, \tau_1, \cdots, \tau_{4k}, \sigma_1, \cdots, \sigma_{6k})$ in the space C^{10k+1} , we set

$$g_{4k}(u) = \tau_0 u^{4k} + \tau_1 u^{4k-1} + \dots + \tau_{4k},$$

$$h_{6k}(u) = u^{6k} + \sigma_1 u^{6k-1} + \dots + \sigma_{6k}.$$

Then the basic elliptic surface $B_k(\tau, \sigma)$ over $\Delta = P^1(C)$ is defined by

$$\begin{split} y^2 z - 4x^3 + g_{4k}(u) x z^2 + h_{6k}(u) z^3 &= 0 \quad \text{in } W_0 , \\ y_1^2 z_1 - 4x_1^3 + u_1^{4k} g_{4k}(1/u_1) x_1 z_1^2 + u_1^{6k} h_{6k}(1/u_1) z_1^3 &= 0 \quad \text{in } W_1 . \end{split}$$

The projection Ψ of $B_k(\tau, \sigma)$ onto \varDelta is defined by

$$\Psi: (x, y, z, u) \longmapsto u$$
$$(x_1, y_1, z_1, u_1) \longmapsto u_1.$$

We simply denote by $u = \infty$ the point $u_1 = 0$ on Δ .

We define two polynomials $D_k(u)$ and $\widetilde{D}_k(u_1)$, respectively, by