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Introduction.

In this paper we shall determine global monodromy representations of
certain basic elliptic surfaces over a complex projective line $P^{1}(C)$ . Such a
surface has a following normal form (Kas [2]); Let $P^{2}(C)$ be a complex
projective plane with homogeneous coordinate $(x, y, z)$ . We take two copies
$W_{0}=P^{2}(C)\times C_{0}$ and $W_{1}=P^{2}(C)\times C_{1}$ of the $productP^{2}(C)\times C$ and form their
union

$W^{k}=W_{0}\cup W_{1}$ $(k=1, 2, )$

by identifying $(x, y, z, u)\in W_{0}$ with $(x_{1}, y_{1}, z_{1}, u_{1})\in W_{1}$ if and only if

$u^{2k}x_{1}=x$, $u^{3k}y_{1}=y$ , $z_{1}=z$, $uu_{1}=1$ .
Similarly we define

$\Delta=C_{0}\cup C_{1}$ ,

where we identify $u\in C_{0}$ with $u_{1}\in C_{1}$ if and only if $uu_{1}=1$ . For a point
$(\tau, \sigma)=(\tau_{0}, \tau_{1}, \cdots , \tau_{4k}, \sigma_{1}, \cdots , \sigma_{6k})$ in the space $C^{10k+1}$ , we set

$g_{4k}(u)=\tau_{0}u^{4k}+\tau_{1}u^{4k- 1}+\cdots+\tau_{4k}$ ,

$h_{6k}(u)=u^{6k}+\sigma_{1}u^{6k- 1}+\cdots+\sigma_{6k}$ .
Then the basic elliptic surface $B_{k}(\tau, \sigma)$ over $\Delta=P^{1}(C)$ is defined by

$y^{2}z-4x^{3}+g_{4k}(u)xz^{2}+h_{6k}(u)z^{3}=0$ in $W_{0}$ ,

$y_{1}^{2}z_{1}-4x_{1}^{3}+u_{1}^{4k}g_{4k}(1/u_{1})x_{1}z_{1}^{2}+u_{1}^{6k}h_{6k}(1/u_{1})z_{1}^{3}=0$ in $W_{1}$ .
The projection $\Psi$ of $B_{k}(\tau, \sigma)$ onto $\Delta$ is defined by

$\Psi:(x, y, z, u)\leftrightarrow u$

$(x_{1}, y_{1}, z_{1}, u_{1})-u_{1}$ .
We simply denote by $ u=\infty$ the point $u_{1}=0$ on $\Delta$ .

We define two polynomials $D_{k}(u)$ and $\tilde{D}_{k}(u_{1})$ , respectively, by


