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\S 1. Statement of the problem.

It is well known that the hypergeometric function $F(\alpha, \beta, \gamma, x)$ defined
by the series

(1.1) $F(\alpha, \beta, \gamma, x)=\sum_{m=0}^{\infty}\frac{(\alpha,m)(\beta,m)}{(\gamma,m)(1,m)}x^{m}$

has the Euler integral representation

(1.2) $F(\alpha, \beta, \gamma, x)=\frac{\Gamma(\gamma)}{\Gamma(\beta)\Gamma(\gamma-\beta)}\int_{0}^{1}z^{\beta-1}(1-z)^{\gamma-\beta-1}(1-xz)^{-\alpha}dz$ ,

where $(a, k)$ denotes the factorial function

$a(a+1)\cdots(a+k-1)=\frac{\Gamma(a+k)}{\Gamma(a)}$

Series (1.1) is meaningful provided that $\gamma\neq 0,$ $-1,$ $-2,$ $\cdots$ , and then the radius
of convergence is one except in the case when either $\alpha$ or $\beta$ is a non posi-
tive integer. On the other hand, integral (1.2) is convergent if

(1.3) $ 0<{\rm Re}\beta<{\rm Re}\gamma$ ,

and then integral (1.2) is holomorphic with respect to $x$ in $ C-[1, \infty$), $C$ being
the set of complex numbers.

It is natural to attempt weakening restriction (1.3) in the integral repre-
sentation. Indeed, two methods for that are known: method of double con-
tour integrals and that of the finite part for divergent integrals. The former
is usually carried out as follows. Suppose that $ x\in C-[1, \infty$). Let $a$ be a
point in $C-\{0,1,1/x\}$ , say lying on the real axis between $0$ and 1, and let $l_{0}$

and $l_{1}$ be loops in the positive direction at $a$ in $C-\{0,1,1/x\},$ $l_{0}$ encircling
only $z=0$ and $l_{1}$ encircling only $z=1$ . Form the contour $C$ consisting of
$l_{0},$ $l_{1},$ $l_{t)}^{-1}$ and $l_{1}^{-1}$ in this order:

$C=l_{0}l_{1}l_{0}^{-1}l_{1}^{-1}$ ,

$l_{0}^{-1}$ and $l_{1}^{-1}$ being the inverse loops of $l_{0}$ and $l_{1}$ respectively. Then take a


