Uniformly hyperfinite algebras and locally compact transformation groups

By Yukimasa OKA

(Received March 10, 1971) (Revised Oct. 7, 1972)

§0. J. Glimm [4] and E. G. Effros-F. Hahn [2] introduced and studied the C^* -algebras associated with locally compact transformation groups. In this paper, we shall represent uniformly hyperfinite algebras and the C^* -algebras of completely continuous operators as transformation group C^* -algebras.

Let $G^{(k)}$ $(k=1, 2, \cdots)$ be cyclic groups of finite order q_k , and consider the product groups $G_n = \prod_{k=1}^n G^{(k)}$ $(n = 1, 2, \dots)$. By left multiplications, $G^{(k)}$ and G_n are transformation groups on themselves. We denote by $Z^{(k)}$ and Z_n the groups $G^{(k)}$ and G_n which are considered as the underlying spaces of transformation groups. Then $(G^{(k)}, Z^{(k)})$ and (G_n, Z_n) are discrete finite transformation groups. Let $Z = \prod_{k=1}^{\infty} Z^{(k)}$ and let G be the restricted direct product $\prod_{k=1}^{\infty} G^{(k)}$ of $G^{(k)}$. Then (G, Z) is a locally compact transformation group such that G is a discrete countable group and Z is a compact Hausdorff space. Let $\mathfrak{A}(G^{(k)}, Z^{(k)})$ $(k = 1, 2, \dots)$, $\mathfrak{A}(G_n, Z_n)$ $(n = 1, 2, \dots)$, and $\mathfrak{A}(G, Z)$ be transformation group C^* -algebras associated with the transformation groups $(G^{(k)}, Z^{(k)})$ $(k = 1, 2, \dots), (G_n, Z_n)$ $(n = 1, 2, \dots),$ and (G, Z), respectively ([2], [4]). Then we shall show that $\mathfrak{A}(G, Z)$ is a uniformly hyperfinite algebra of type $\{p_n\}$, where $p_n = q_1q_2 \cdots q_n$ $(n = 1, 2, \cdots)$, and $\mathfrak{A}(G, Z) = C^* - \lim_n \mathfrak{A}(G_n, Z_n) = C^* - \lim_n \mathfrak{A}(G_n, Z_n)$ $\otimes_k \mathfrak{A}(G^{(k)}, Z^{(k)})$ (Theorem 5). Conversely, let \mathfrak{A} be a uniformly hyperfinite algebra of type $\{p_n\}$. Then we shall show that there exists a transformation group (G, Z) such that \mathfrak{A} is *-isomorphic to $\mathfrak{A}(G, Z)$ where (G, Z) is as above (Corollary 6).

In §3, we shall show that if G is an infinite cyclic group, the C^* -algebra $\mathfrak{A}(G, G)$ associated with the transformation group (G, G) is *-isomorphic to the C^* -algebra $\mathfrak{LC}(H)$ of all completely continuous operators in a separable Hilbert space H (Theorem 9).