Bordism groups of dihedral groups

By Masayoshi KAMATA and Haruo MINAMI

(Received June 6, 1972) (Revised Nov. 2, 1972)

Let G be a finite group. By a G-manifold we mean a closed oriented manifold together with an orientation preserving action of G without fixed points or a closed weakly complex manifold together with a weakly complex structure preserving action of G without fixed points. We denote a G-manifold by a pair (M, f) where M is a G-manifold and f a free action of G on $M: G \times M \to M$ and its bordism class by [M, f]. Moreover we denote by $\tilde{\mathcal{Q}}_m^{so}(G)$ the oriented reduced bordism group of G of dimension m and by $\tilde{\mathcal{Q}}_m^{m}(G)$ the weakly complex reduced bordism group of G of dimension m.

Let D_n be the dihedral group of order 2n. In this paper the authors show a mapping splitting theorem for $\tilde{\Omega}_m^{so}(D_n)$ and $\tilde{\Omega}_m^U(D_n)$ when *n* is odd and determine the additive structure of $\tilde{\Omega}_m^U(D_p)$, *p* an odd prime.

In the following sections we denote $\widetilde{\Omega}_m^{SO}(G)$ or $\widetilde{\Omega}_m^U(G)$ by $\widetilde{\Omega}_m^L(G)$.

§ 1. A mapping splitting theorem for $\widetilde{\mathcal{Q}}_m^L(G)$.

Let G be a finite group and BG a classifying space of G. Let (M, f) be a G-manifold of dimension m. Then $\pi: M \to M/G$ is a principal G-bundle and there exists a classifying map $g: M/G \to BG$. The correspondence [M, f] $\mapsto [M/G, g]$ is well-defined homomorphism of $\tilde{\mathcal{Q}}_m^L(G)$ into $\tilde{\mathcal{Q}}_m^L(BG)$ and we have the following known result.

THEOREM 1.1 (Conner-Floyd [1]). The above defined homomorphism ρ_* : $\tilde{\Omega}^L_*(G) \to \tilde{\Omega}^L_*(BG)$ is an isomorphism of degree 0 as an Ω^L_* -module homomorphism.

Let $\alpha: H \to G$ be a homomorphism of finite groups and $B\alpha: BH \to BG$ a map induced by α . We denote by $\alpha_*: \tilde{\Omega}^L_*(BH) \to \tilde{\Omega}^L_*(BG)$ the homomorphism induced by $B\alpha$ and we also denote $\rho_*^{-1}\alpha_*\rho_*: \tilde{\Omega}^L_*(H) \to \tilde{\Omega}^L_*(G)$ by α_* . Then we have

(1.1)
$$\alpha_*([M, f]) = [G \times M, f_G], \quad [M, f] \in \tilde{\mathcal{Q}}_*^L(H)$$

where $G \underset{H}{\times} M = G \times M/(g, x) \sim (g\alpha(h)^{-1}, f(h, x)), g \in G, h \in H \text{ and } x \in M \text{ on which}$ G acts by the rule

$$f_G(g, g' \underset{H}{\times} x) = gg' \underset{H}{\times} x, \quad g, g' \in G, x \in M.$$