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\S 1. Introduction.

The purpose of this paper is to prove the following theorem.
THEOREM. Let $G$ be a complex abelian Lie group of complex dimension re

and $K$ the maximal compact subgroup of the connected compOnent of $G$ with
Lie algebra $f$ . Let $q$ be the complex dimension of $f\cap\sqrt{-1}f$ . Then there exists
a real-valued $C^{\infty}$ function $\varphi$ on $G$ satisfying the following conditions:

(1) The Levi form of $\varphi$ :

$L(\varphi, x)=\sum_{i,j=1}^{n}\frac{\partial^{2}}{\partial z_{i}\partial}\varphi_{\overline{Z_{j}}}dz_{i}d\overline{z}_{j}$

is Positive semi-definite and has $n-qposi\hslash ve$ eigenvalues at every Point $x$ of
$G$ , where $(z_{1}, z_{2}, \cdots , z_{n})$ denotes a system of coordinates in some neighborhoodl
of $X$ .

(2) The set
$G_{c}=\{g\in G:\varphi(g)<c\}$

is a relatively compact subset of $G$ for any $c\in R$ .
By the above theorem any complex abelian Lie group is always pseudo-

convex. In the last part we shall find a complex Lie group of arbitrary
dimension, on which every holomorphic function is a constant and which is
pseudoconvex and l-complete.
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\S 2. Proof of Theorem.

Since all connected components of $G$ are biholomorphically isomorphic,.
we may assume that $G$ is connected. Let $\mathfrak{Q}$ be the sheaf of all germs of
holomorphic functions on $G$ . We put

$G^{0}=$ {$g\in G:f(g)=f(e)$ for all $f\in H^{0}(G,$ $\mathfrak{Q})$ }

where $e$ is the unit element of $G$ . Then Morimoto [5] proved that $G^{0}$ is a
complex abelian Lie subgroup of $G$ and that every holomorphic function on


