Rings satisfying polynomial constraints

By Mohan S. PUTCHA and Adil YAQUB

(Received Feb. 12, 1972)

§ 1. Introduction.

In a well-known paper [1] Herstein proved that if an associative ring R has the property that for each x in R there exists a polynomial $f_x(\lambda)$ (depending on x) with integer coefficients such that $x-x^2f_x(x)$ is in the center of R, then R is commutative. In this paper, we generalize Herstein's Theorem by essentially considering conditions on n elements x_1, \dots, x_n of R. We make extensive use of Herstein's methods throughout. A related problem has been recently investigated by the authors [5].

§ 2. Main results.

Throughout, R is an associate ring and x_1, \dots, x_n are elements of R. A word $w(x_1, \dots, x_n)$ is simply a product in which each factor is x_i , for some $i=1,\dots,n$. A polynomial $f(x_1,\dots,x_n)$ is, then, an expression of the form $f(x_1,\dots,x_n)=c_1w_1(x_1,\dots,x_n)+\dots+c_qw_q(x_1,\dots,x_n)$, where the c_i are integers.

DEFINITION. Let n be a positive integer. An α_n -ring is an associative ring R with the property that for all x_1, \dots, x_n in R, there exists a polynomial $f_{x_1,\dots,x_n}(x_1,\dots,x_n)$ (depending on x_1,\dots,x_n) with integer coefficients such that:
(a) degree of each x_i in every term of $f_{x_1,\dots,x_n}(x_1,\dots,x_n) \geq 2$, and (b) $x_1 \dots x_n - f_{x_1,\dots,x_n}(x_1,\dots,x_n) \in Z$, where Z denotes the center of R.

It is clear that subrings and homomorphic images of α_n -rings are again α_n -rings.

Our present object is to prove the following

THEOREM (Principal Theorem). If R is an α_n -ring with center Z, then $R^n \subseteq Z$ (and conversely).

Since this theorem is true for n=1 (Herstein's Theorem), we shall assume that n>1 and

(2.0) Fundamental Induction Hypothesis. The above theorem is true for α_{n-1} -rings.

In preparation for the proof of this theorem, we first establish the following lemmas.