Products of two semi-algebraic groups

By Morikuni GOTO¹⁾

(Received Dec. 13, 1971)

§ 1. Introduction.

Let R and C denote the field of real numbers and complex numbers, respectively. For a field Φ , we denote by $GL(n,\Phi)$ the group of all n by n non-singular matrices over Φ . A subgroup A of $GL(n,\Phi)$ is called algebraic if there exists a family of polynomials of n^2 variables over Φ which defines A. In this paper, we are mainly interested in subgroups of GL(n,R). A subgroup P of GL(n,R) is said to be pre-algebraic²⁾ if there exists an algebraic subgroup A of GL(n,R) which contains P as a subgroup of finite index. A pre-algebraic group is closed, and a closed subgroup G of GL(n,R) is pre-algebraic if and only if the Lie algebra G of G is algebraic and G has only finitely many connected components. For any subgroup G of GL(n,R), we can find the smallest pre-algebraic group $\mathcal{A}(G)$ containing G. Let us call $\mathcal{A}(G)$ the Pre-algebraic hull of G. For a topological group G, we adopt the notation G_e for the identity component group of G. The identity component of $\mathcal{A}(G)$ will be denoted by $\mathcal{A}_e(G)$, i. e. $\mathcal{A}_e(G) = (\mathcal{A}(G))_e$.

Let G be a connected Lie subgroup of $GL(n, \mathbb{R})$. Then the pre-algebraic hull $\mathcal{A}(G)$ is connected, and the commutator subgroup of $\mathcal{A}(G)$ is closed and is contained in G. In Goto [4], the author defined G to be semi-algebraic if G contains a maximal compact subgroup of $\mathcal{A}(G)$. If G is semi-algebraic, then G is a closed normal subgroup of $\mathcal{A}(G)$ such that the factor group $\mathcal{A}(G)/G$ is isomorphic with a vector group \mathbb{R}^k of a certain dimension k, and vice versa. Let us extend the definition of semi-algebraic groups to the non-connected case.

DEFINITION. A closed subgroup S of $GL(n, \mathbf{R})$ is said to be semi-algebraic if S is a normal subgroup of its pre-algebraic hull $\mathcal{A}(S)$ and the factor group $\mathcal{A}(S)/S$ is a vector group.

It is obvious that this generalizes the definition of the connected case and that a pre-algebraic group is semi-algebraic.

Let S be a semi-algebraic group. Then $S\mathcal{A}_e(S)$ is of finite index in $\mathcal{A}(S)$,

¹⁾ Work supported partly by NSF GP 28418.

²⁾ About pre-algebraic groups, see Goto-Wang [5].