Periodic maps and circle actions

Dedicated to Professor Shigeo Sasaki on his 60th birthday

By Fuichi UCHIDA

(Received Sept. 4, 1971)

§ 0. Introduction.

Fix a compact Lie group G and a family \mathcal{F} of subgroups of G. We consider all (φ, M) where M is a closed oriented smooth manifold, and $\varphi \colon G \times M \to M$ is an orientation preserving smooth G-action so that for $x \in M$ the isotropy subgroup

$$G_x = \{g \in G, \ \varphi(g, x) = x\}$$

is conjugate to a member of \mathcal{F} . Then a bordism group $\mathcal{O}_n(G; \mathcal{F})$ of \mathcal{F} -free oriented G-manifolds is defined.

Let S^1 be the unit circle in the field of complex numbers and regard it a compact Lie group. Let $Z_m = \{t \in S^1, t^m = 1\}$ be the cyclic subgroup of order m.

Given an oriented Z_m -manifold (φ, M) , consider a cartesian product $S^1 \times M$ and let Z_m act on $S^1 \times M$ by

$$t \cdot (z, x) = (zt^{-1}, \varphi(t, x))$$

for $t \in Z_m$, $z \in S^1$ and $x \in M$. Denote by $S^1 \times_{Z_m} M$ the orbit manifold and by [z, x] the point of $S^1 \times_{Z_m} M$ represented by (z, x) of $S^1 \times M$. Then there is a circle action $\bar{\varphi}$ on $S^1 \times_{Z_m} M$ given by

$$\bar{\varphi}(\lambda, [z, x]) = [\lambda z, x].$$

If (φ, M) is an oriented \mathcal{F} -free Z_m -manifold, then $(\bar{\varphi}, S^1 \times_{Z_m} M)$ is \mathcal{F} -free S^1 -manifold and this induces an extension homomorphism

$$E: \mathcal{O}_n(Z_m; \mathcal{F}) \longrightarrow \mathcal{O}_{n+1}(S^1; \mathcal{F}).$$

On the other hand, let \mathcal{F} be a family of subgroups of S^1 , denote by \mathcal{F}_m the family of subgroups of Z_m given by

$$\mathcal{F}_m = \{Z_m \cap H, H \in \mathcal{F}\}.$$

Let (φ, M) be an oriented \mathcal{F} -free S^1 -manifold, then the restriction $(\varphi | Z_m, M)$ is an oriented \mathcal{F}_m -free Z_m -manifold and this restriction induces a homomorphism