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\S 0. Introduction.

Fix a compact Lie group $G$ and a family $\mathcal{F}$ of subgroups of $G$ . We con-
sider all $(\varphi, M)$ where $M$ is a closed oriented smooth manifold, and $\varphi:G\times M\rightarrow M$

is an orientation preserving smooth G-action so that for $x\in M$ the isotropy
subgroup

$G_{x}=\{g\in G, \varphi(g, x)=x\}$

is conjugate to a member of $\mathcal{F}$ . Then a bordism group $\mathcal{O}_{n}(G;\mathcal{F})$ of $\mathcal{F}$ -free
oriented G-manifolds is defined.

Let $S^{1}$ be the unit circle in the field of complex numbers and regard it a
compact Lie group. Let $Z_{m}=\{t\in S^{1}, t^{m}=1\}$ be the cyclic subgroup of order $m$ .

Given an oriented $Z_{m}$-manifold $(\varphi, M)$ , consider a cartesian product $S^{1}\times M$

and let $Z_{m}$ act on $S^{1}\times M$ by

$t\cdot(z, x)=(zt^{-1}, \varphi(t, x))$

for $t\in Z_{m},$ $z\in S^{1}$ and $x\in M$. Denote by $S^{1}\times_{z_{m}}M$ the orbit manifold and by
$[z, x]$ the point of $S^{1}\times_{z_{m}}M$ represented by $(z, x)$ of $S^{1}\times M$. Then there is a
circle action $\overline{\varphi}$ on $S^{1}x_{z_{m}}M$ given by

$\overline{\varphi}(\lambda, [z, x])=[\lambda z, x]$ .
If $(\varphi, M)$ is an oriented $\mathcal{F}$-free $Z_{m}$-manifold, then $(\overline{\varphi}, S^{1}\times_{z_{m}}M)$ is $\mathcal{F}$ -free $S^{1}-$

manifold and this induces an extension homomorphism

$E$ : $\mathcal{O}_{n}(Z_{m};\mathcal{F})\rightarrow \mathcal{O}_{n+1}(S^{1};\mathcal{F})$ .
On the other hand, let $\mathcal{F}$ be a family of subgroups of $S^{1}$ , denote by $\mathcal{F}_{m}$

the family of subgroups of $Z_{m}$ given by

$\mathcal{F}_{m}=\{Z_{m}\cap H, H\in \mathcal{F}\}$ .
Let $(\varphi, M)$ be an oriented S-free $S^{1}$ -manifold, then the restriction $(\varphi\} Z_{m}, M)$

is an oriented $\mathcal{F}_{m}$-free $Z_{m}\cdot manifold$ and this restriction induces a homo-
morphism


