On the index of a semi-free S¹-action

By Katsuo KAWAKUBO and Fuichi UCHIDA

(Received June 29, 1970)

§ 1. Introduction.

Let G be a compact Lie group, M^n a closed smooth n-manifold and $\varphi: G \times M^n \to M^n$ a smooth action. Then the fixed point set is a disjoint union of smooth k-manifolds F^k , $0 \le k \le n$.

P.E. Conner and E.E. Floyd [2] obtained several properties of fixed point sets of smooth involutions and one of their results is the following.

Suppose that $T: M^{2k} \to M^{2k}$ is a smooth involution on a closed manifold of odd Euler characteristic. Then some component of the fixed point set is of dimension $\geq k$.

Now we consider semi-free smooth S^1 -actions on oriented manifolds and the purpose of this paper is to show the following results.

THEOREM 1.1. Let M^n be an oriented closed smooth n-manifold and $\varphi: S^1 \times M^n \to M^n$ a semi-free smooth action. Then each k-dimensional fixed point set F^k can be canonically oriented and the index of M^n is the sum of indices of F^k , that is,

$$I(M^n) = \sum_{k=0}^n I(F^k).$$

Theorem 1.2. Suppose that $\varphi: S^1 \times M^{4k} \to M^{4k}$ is a semi-free smooth S^1 -action on an oriented closed manifold of non-zero index. Then some component of the fixed point set is of dimension $\geq 2k$.

\S 2. Semi-free S^1 -action.

Let S^1 and D^2 denote the unit circle and the unit disk in the field of complex numbers. Regard S^1 as a compact Lie group. Let M^n be an oriented closed smooth n-manifold and $\varphi: S^1 \times M^n \to M^n$ a smooth action. The action φ is called semi-free if it is free outside the fixed point set. Then we have the following ([4], Lemma 2.2).

LEMMA 2.1. The normal bundle of each component of the fixed point set in M^n has naturally a complex structure, such that the induced S^1 -action on this bundle is a scalar multiplication.

From this lemma, a codimension of each component of the fixed point set