On some doubly transitive permutation groups of degree n and order $2^{l}(n-1)n$

By Hiroshi KIMURA¹⁾

(Received Jan. 27, 1969) (Revised Nov. 22, 1969)

1. Introduction.

Doubly transitive permutation groups of degree n and order 2(n-1)n were determined by N. Ito ([9]). Some doubly transitive permutation groups of degree n and order 4(n-1)n were studied in [10].

The object of this paper is to prove the following result.

THEOREM. Let Ω be the set of symbols $1, 2, \dots, n$. Let \mathfrak{G} be a doubly transitive group on Ω of order $2^{l}(n-1)n$ (l > 1) not containing a regular normal subgroup and let \mathfrak{R} be the stabilizer of symbols 1 and 2. Assume that \mathfrak{R} is cyclic. Then \mathfrak{G} is isomorphic to one of the groups PGL(2, *), PSL(2, *), $PSU(3, 3^{2})$ and $PSU(3, 5^{2})$.

We use the standard notation. $C_{\mathfrak{X}}(\mathfrak{T})$ denotes the centralizer of a subset \mathfrak{T} in a group \mathfrak{X} and $N_{\mathfrak{X}}(\mathfrak{T})$ stands for the normalizer of \mathfrak{T} in \mathfrak{X} . $\langle S, T, \cdots \rangle$ denotes the subgroup of \mathfrak{X} generated by elements S, T, \cdots of \mathfrak{X} .

2. On the degree of the permutation group (§.

1. Let \mathfrak{H} be the stabilizer of the symbol 1. \mathfrak{R} is of order 2^{i} and it is generated by a permutation K. Let us denote the unique involution $K^{2^{l-1}}$ of \mathfrak{R} by τ . Since \mathfrak{G} is doubly transitive on \mathfrak{Q} it contains an involution I with the cyclic structure (1 2) Then we have the following decomposition of \mathfrak{G} ;

$$\mathfrak{G} = \mathfrak{H} + \mathfrak{H} \mathfrak{H}$$

Since I is contained in $N_{\mathfrak{G}}(\mathfrak{R})$, it induces an automorphism of \mathfrak{R} and (i) $K^{I} = K$ or $K\tau$, (ii) $K^{I} = K^{-1}\tau$ or (iii) $K^{I} = K^{-1}$. (For the case l = 2, (i) $K^{I} = K$ or (iii) $K^{I} = K^{-1}$.) If an element H'IH of a coset $\mathfrak{H}IH$ of \mathfrak{H} is an involution, then $IHH'I = (HH')^{-1}$ is contained in \mathfrak{R} . Hence, in the case (i) the coset $\mathfrak{H}IH$ contains just two involutions, namely $H^{-1}IH$ and $H^{-1}\tau IH$, in the case (ii) it contains just 2^{l-1} involutions, namely $H^{-1}K'IH$ for $K' \in \langle K^2 \rangle$, and in the case

¹⁾ This work was supported by The Sakkokai Foundation.