On the group of units of an absolutely cyclic number field of prime degree

By Armand BRUMER

(Received Feb. 25, 1969)

Let K be a cyclic extension of odd prime degree p over Q with Galois group G generated by s and let E be the group of units of K of norm 1 (so that the group of units of K is the direct product of E and $\{\pm 1\}$). It was shown by Hasse ([1]) in case p is 3 and in a recent paper by Morikawa ([3]) for p=5 that we can find a unit ε in E which together with its conjugates generates E. We shall call such a unit a *Minkowski unit* for K. We have the following generalization of the above results.

THEOREM. Let h be the class number of K. Consider the set A of integral ideals a in the cyclotomic field Q_p of p^{th} roots of unity such that h = N(a), where N denotes the absolute norm.

i) If all ideals a in A are principal, then K has a Minkowski unit;

ii) If no ideal **a** in **A** is principal, then K has no Minkowski unit.

COROLLARY. If p is at most 19, then K has a Minkowski unit since Q_p has class number 1 in those cases.

REMARK. The second assertion suggests that a fearless computer would have no problem finding fields K with no Minkowski units.

PROOF OF THE THEOREM. Clearly E is a module over $Z[G]/(1+s \cdots + s^{p-1})$ which is isomorphic with the ring of integers O in Q_p by the map sending s on a fixed primitive p^{th} root of unity. The cyclotomic units of K form a G-submodule H of E of index h by the analytic class number formulae (cf. [2]). In fact, H is the free O-module generated by a cyclotomic unit η ; since O is Dedekind and E has rank p-1, the isomorphism of O with H induced by sending 1 to η extends uniquely to an isomorphism of a^{-1} with E for a suitable integral ideal a of Q_p . Hence we have $h = [E:H] = [a^{-1}:O] = N(a)$ which proves the theorem since K has a Minkowski unit if and only if E is a free O-module, i.e. if and only if a is principal.

The author wishes to thank Professor Kawada for pointing out that our corollary was also found by B. A. Zeinalov, The units of a cyclic real field, in Dagestan State University, Coll. Sci. Papers, pp. 21/23, Dagestan Kniž. Indat., Makhachkale, 1965 (Math. Rev. Vol. 36, No. 1, 140).

Columbia University