On doubly transitive permutation groups of degree n and order $4(n-1)n^*$

By Hiroshi KIMURA

(Received May 27, 1968)

§ 1. Introduction.

Doubly transitive permutation groups of degree n and order 2(n-1)n were determined by N. Ito ($\lceil 4 \rceil$).

The object of this paper is to prove the following result.

THEOREM. Let Ω be the set of symbols $1, 2, \dots, n$. Let \mathfrak{B} be a doubly transitive group on Ω of order 4(n-1)n not containing a regular normal subgroup and let \mathfrak{R} be the stabilizer of the set of symbols 1 and 2. Assume that $\mathfrak{R} \cap G^{-1}\mathfrak{R}G = 1$ or \mathfrak{R} for every element G of \mathfrak{B} . Then we have the following results:

- (I) If \Re is a cyclic group, then \Im is isomorphic to either PGL(2,5) or PSL(2,9).
- (II) If K is an elementary abelian group, then $\mathfrak S$ is isomorphic to PSL(2,7). We use the standard notation. $C_{\mathfrak X}\mathfrak T$ denotes the centralizer of a subset $\mathfrak T$ in a group $\mathfrak X$ and $N_{\mathfrak X}\mathfrak T$ stands for the normalizer of $\mathfrak T$ in $\mathfrak X$. We denote the number of elements in $\mathfrak T$ by $|\mathfrak T|$.

§ 2. Proof of Theorem, (I).

1. Let \mathfrak{P} be the stabilizer of the symbol 1. \mathfrak{R} is of order 4 and it is generated by a permutation K whose cyclic structure has the form (1) (2) \cdots . Since \mathfrak{P} is doubly transitive on \mathfrak{Q} , it contains an involution I with the cyclic structure (1 2) \cdots . We may assume that I is conjugate to K^2 . Then we have the following decomposition of \mathfrak{P} ;

$$\mathfrak{G} = \mathfrak{H} + \mathfrak{H} \mathfrak{H}$$
.

Since I is contained in $N_{\odot}\Re$, it induces an automorphism of \Re and (i) $\langle I \rangle \Re$ is an abelian 2-group of type $(2, 2^2)$ or (ii) $\langle I \rangle \Re$ is dihedral of order 8. If an element H'IH of a coset $\Im IH$ of \Im is an involution, then $IHH'I=(HH')^{-1}$ is contained in \Re . Hence, in case (i) the coset $\Im IH$ contains just two involutions,