On the alternating groups II

By Takeshi Kondo

(Received June 13, 1968)

Introduction.

Let \mathfrak{A}_m be the alternating group on m letters $\{1, 2, \dots, m\}$. Put m = 4n + r, where n is a positive integer and $0 \le r \le 3$. Let $\tilde{\alpha}_n$ be an involution of \mathfrak{A}_m which has a cycle decomposition

$$(1, 2)(3, 4) \cdots (4n-3, 4n-2)(4n-1, 4n)$$
.

 $\tilde{\alpha}_n$ is contained in the center of a 2-Sylow subgroup of \mathfrak{A}_m . For r=1, 2 and 3, we denote by $\widetilde{H}(n,r)$ the centralizer in \mathfrak{A}_m of $\tilde{\alpha}_n$. In the present paper, we shall prove the following two theorems.

THEOREM I. Let G(n, r) be a finite group with the following properties:

- (1) G(n,r) has no subgroup of index 2, and
- (2) G(n,r) contains an involution α_n in the center of a 2-Sylow subgroup of G(n,r) whose centralizer $C_{G(n,r)}(\alpha_n)$ is isomorphic to $\widetilde{H}(n,r)$.

Then if r=2 or 3, G(n,r) is isomorphic to \mathfrak{A}_{4n+r} except for the case n=1 and r=2 where $G(1,2)\cong\mathfrak{A}_6$ or PSL (2,7).

For the case r=1, the author has not obtained the analogous result. But we can prove much weaker result. We note that $\widetilde{H}(n,1)$ has a unique elementary abelian subgroup \widetilde{S} of order 2^{2n} up to conjugacy (cf. Appendix, Proposition 5). Then we have

THEOREM II⁽⁰⁾. Let G(n,1) be a finite group containing an involution whose centralizer H(n,1) is isomorphic to $\widetilde{H}(n,1)$. Let S be an elementary abelian subgroup of order 2^{2n} of H(n,1). Assume that there exists a one-to-one mapping θ from $\widetilde{H}(n,1) \cup N_{\mathfrak{A}_m}(\widetilde{S})$ (the set theoretic union in \mathfrak{A}_m) onto $H(n,1) \cup N_{G(n,1)}(S)$ such that θ induces an isomorphism between $\widetilde{H}(n,1)$ (resp. $N_{\mathfrak{A}_m}(\widetilde{S})$) and H(n,1) (resp. $N_{G(n,1)}(S)$).

Then G(n, 1) is isomorphic to \mathfrak{A}_{4n} or \mathfrak{A}_{4n+1} .

The proof of Theorem I depends on Theorem A of the author's previous paper [9] which was proved only in the case r=2 or 3. But we have not obtained such result for the case r=1. This is the reason why the stronger condition is necessary for the case r=1. However, we note: Theorem II shows that, if we can prove a result in the case r=1 similar to Theorem A of [9], we shall be able to at once obtain a characterization of \mathfrak{A}_{4n} and \mathfrak{A}_{4n+1} under