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§1. Introduction.

This paper is concerned with the mixed problems for hyperbolic equations
of second order. Let S be a sufficiently smooth compact hypersurface in R",
and let £ be the interior or exterior domain of S.

Consider the hyperbolic equation of second order
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a6, t: D)= 32k (x, 1)+ h(x, 1
i=1 X

) N n a a n a ’
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where the coefficients belong to B*(2x(—d,, c0))?. We assume that a,(x, 1: D)
is an elliptic operator satisfying

(1.2) 3 ai, t>sisj>d;z;s;~f >0

i,j=1
aij(xx t) = aji(x’ t)

for all (x, 1) € 2X(—dy, ) and £=(§,, &, -+, &) € R, and that hy(x, ) (=1,2,
..., n) are real-valued. For this equation we consider the following boundary
conditions

(1.3) Bou(x, )=u(x,)=0 on S,
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(1.4 B,u(x, t)= i u(x, )—<h, u)—g?u(x, D+o(s, Hul(x, ) =0 on S

where
a n n
= al S, t i y hy = h’L ] t )
gny =, 3,00 g =BG, D
v=(y,, -+, ¥,) 1s the outer unit normal of S at s< S, and a(s, f) is a real-valued

1) $*(w), w being an open set, is the set of all functions defined in @ such that
their partial derivatives of order <k all exist and are continuous and bounded.



