Mixed problems for hyperbolic equations of second order

By Mitsuru IKAWA

(Received Feb. 1, 1968)

§ 1. Introduction.

This paper is concerned with the mixed problems for hyperbolic equations of second order. Let S be a sufficiently smooth compact hypersurface in \mathbb{R}^n , and let Ω be the interior or exterior domain of S.

Consider the hyperbolic equation of second order

(1.1)
$$L[u] = \frac{\partial^{2}}{\partial t^{2}} u + a_{1}(x, t : D) - \frac{\partial}{\partial t} u + a_{2}(x, t : D) u = f$$

$$a_{1}(x, t : D) = \sum_{i=1}^{n} 2h_{i}(x, t) - \frac{\partial}{\partial x_{i}} + h(x, t)$$

$$a_{2}(x, t : D) = -\sum_{i,j=1}^{n} \frac{\partial}{\partial x_{j}} \left(a_{ij}(x, t) - \frac{\partial}{\partial x_{j}} \right) + \sum_{i=1}^{n} b_{j}(x, t) - \frac{\partial}{\partial x_{i}} + c(x, t)$$

where the coefficients belong to $\mathcal{B}^2(\Omega \times (-\delta_0, \infty))^{1}$. We assume that $a_2(x, t: D)$ is an elliptic operator satisfying

(1.2)
$$\sum_{i,j=1}^{n} a_{ij}(x,t)\xi_{i}\xi_{j} > d\sum_{i=1}^{n} \xi_{i}^{2} \qquad (d>0)$$
$$a_{ij}(x,t) = a_{ii}(x,t)$$

for all $(x, t) \in \Omega \times (-\delta_0, \infty)$ and $\xi = (\xi_1, \xi_2, \dots, \xi_n) \in \mathbb{R}^n$, and that $h_i(x, t)$ $(i = 1, 2, \dots, n)$ are real-valued. For this equation we consider the following boundary conditions

(1.3)
$$B_1 u(x, t) = u(x, t) = 0$$
 on $S_1 u(x, t) = 0$

(1.4)
$$B_2 u(x, t) = \frac{\partial}{\partial n_t} u(x, t) - \langle h, \nu \rangle \frac{\partial}{\partial t} u(x, t) + \sigma(s, t) u(x, t) = 0$$
 on S

where

$$\frac{\partial}{\partial n_t} = \sum_{i,j=1}^n a_{ij}(s,t)\nu_i \frac{\partial}{\partial x_j}, \qquad \langle h, \nu \rangle = \sum_{i=1}^n h_i(s,t)\nu_i,$$

 $\nu = (\nu_1, \dots, \nu_n)$ is the outer unit normal of S at $s \in S$, and $\sigma(s, t)$ is a real-valued

¹⁾ $\mathcal{B}^k(\omega)$, ω being an open set, is the set of all functions defined in ω such that their partial derivatives of order $\leq k$ all exist and are continuous and bounded.