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In this paper we continue the study of complex hypersurfaces of complex
space forms (i.e. Kdhlerian manifolds of constant holomorphic sectional curva-
ture) begun in [8]. The main results are: the determination of the holonomy
groups of such hypersurfaces, a generalization of the main theorem of [8] on
Einstein hypersurfaces, the non-existence of a certain type of hypersurface in
the complex projective space, and some results concerning the curvature of
complex curves.

Let M be a complex space form (which in general will not be complete)
of complex dimension n-}+1 and let M be an immersed complex hypersurface
in M. In §1 we show that the rank of the second fundamental form of M is
intrinsic and that M is rigid in A/, if the latter is simply connected and com-
plete. The local version of rigidity is contained as a special case in the work
of Calabi [1], but our method is more direct and more in the line of classical
differential geometry.

The holonomy group of M (with respect to the induced Kihler metric) is
studied in §2. If the holomorphic sectional curvature ¢ of M is negative, the
holonomy group is always U(n). In the case where #>0 (e.g. M = P™(C)),
the holonomy group of M is either U(n) or SO(n) x S* (S* denotes the circle
group), the latter case arising only when M is locally holomorphically isometric
to the complex quadric Q" in P"#(C). When ¢=0 (i.e. when M is flat), the
holonomy group of M depends on the rank of the second fundamental form
and we obtain a result of Kerbrat [3] more directly.

In §3 we first obtain the following generalized local version of the clas-
sification theorem of [8]. If the Ricci tensor S of M is parallel (i.e. F'S=0),
then M is totally geodesic in M or else #>0 and M is locally a complex
quadric. To prove this we modify Theorem 2 [8] to show that A is locally
symmetric when its Ricci tensor is parallel, and obtain the local classification
without using the list of irreducible Hermitian symmetric spaces. This local
version was proved by Chern [2] with the original assumption that M is
Einstein, and Takahashi [9] has shown that M is Einstein if its Ricci tensor
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