Pluricanonical systems on algebraic surfaces of general type

Dedicated to Professor S. Iyanaga on his 60th birthday

By Kunihiko KODAIRA

(Received Aug. 10, 1967)

By a minimal non-singular algebraic surface of general type we shall mean a non-singular algebraic surface free from exceptional curves (of the first kind) of which the bigenus P_2 and the Chern number c_1^2 are both positive, where c_1 denote the first Chern class of the surface (see §3). Let S denote a minimal non-singular algebraic surface of general type defined over the field of complex numbers and let K be a canonical divisor on S. The number of non-singular rational curves E on S satisfying the equation $KE = 0$ is smaller than the second Betti number of S, where KE denotes the intersection multiplicity of K and E. We define \mathcal{E} to be the union of all the non-singular rational curves E with $KE = 0$ on S and represent it as a sum: $\mathcal{E} = \sum \mathcal{E}_\nu$ of its connected components \mathcal{E}_ν. Obviously \mathcal{E} may be an empty set. Consider a holomorphic map $\Phi: z \to \Phi(z)$ of S into a projective n-space P^n. We shall say that Φ is biholomorphic modulo \mathcal{E} if and only if Φ is biholomorphic on $S - \mathcal{E}$ and $\Phi^{-1}\Phi(z) = z$ for $z \in \mathcal{E}_\nu$. For any positive integer m, we let Φ_{mK} denote the rational map of S into P^n defined by the pluri-canonical system $|mK|$, where $n = \dim |mK|$. Note that, if $|mK|$ has no base point, then Φ_{mK} is a holomorphic map. D. Mumford proved that, for every sufficiently large integer m, the pluri-canonical system $|mK|$ has no base point and Φ_{mK} is biholomorphic modulo \mathcal{E} (see Mumford [6]; compare also Zariski [9], Matsusaka and Mumford [5]). His proof is based on results of Zariski [9] and covers the abstract case. On the other hand, it has been shown by Šafarevič [8] that Φ_{mK} is a birational map. The main purpose of this paper is to prove the following theorem:

Theorem. For every integer $m \geq 4$, the pluri-canonical system $|mK|$ has no base point and Φ_{mK} is a holomorphic map. For every integer $m \geq 6$, the map Φ_{mK} is biholomorphic modulo \mathcal{E}.