A remark on the principal ideal theorem

Dedicated to Professor S. Iyanaga on his sixtieth birthday

By Yukiyosi KAWADA

(Received Oct. 2, 1967)

1. The principal ideal theorem was conjectured by D. Hilbert and was proved by Ph. Furtwängler [3]. The proof was simplified by S. Iyanaga [4], H. G. Schumann (and W. Franz) [8] and E. Witt [11]. The purpose of this short note is to give a cohomology-theoretic interpretation of these proofs.

The problem can be formulated in any class formation. We use the same notations as in [5]. Let \Re be the given family of fields. To each $k \in \Re$ an abelian group E(k) is attached such that (i) for each extension K/k $(k, K \in \Re)$ there is an injection $\varphi_{k/K} : E(k) \to E(K)$, (ii) for each Galois extension K/k $(k, K \in \Re)$ the Galois group G = G(K/k) operates on E(K) and $\varphi_{k/K}E(k) = E(K)^{G \, 1}$. We assume, furthermore, that $\{E(K); K \in \Re\}$ satisfies the axioms of a class formation in [5].

Let $k, K, L \in \mathbb{R}$, $k \subset K \subset L$ such that K/k and L/k are both Galois extensions, and let K/k be the maximal abelian extension in L/k. Hence the Galois group H = G(L/K) is the commutator subgroup of the Galois group G = G(L/k): H = [G, G].

PRINCIPAL IDEAL THEOREM. Under the above assumptions

(I)
$$\varphi_{k/K}E(k) \subset N_HE(L)$$
 for $H = [G, G]$.

Since $H^0(G, E(L)) \cong E(k)/N_G E(L)$, $H^0(H, E(L)) \cong E(K)/N_H E(L)$ and the restriction mapping $\operatorname{res}_{G/H}: H^0(G, E(L)) \to H^0(H, E(L))$ is the canonical mapping: $\alpha \mod N_G E(L) \to \alpha \mod N_H E(L)$, the above proposition (I) is equivalent to

(I)*
$$\operatorname{res}_{G/H}H^{0}(G, E(L)) = 1$$
 for $H = [G, G]$.

2. Let $\xi_{L/k} \in H^2(G, E(L))$ and $\xi_{L/K} \in H^2(H, E(L))$ be the canonical cohomology classes. By the fundamental theorem of J. Tate [9] there are isomorphisms: $H^{-2}(G, \mathbf{Z}) \cong H^0(G, E(L))$ by $\eta_{L/k} \to \xi_{L/k} \cup \eta_{L/k}$ and $H^{-2}(H, \mathbf{Z}) \cong H^0(H, E(L))$ by $\zeta_{L/K} \to \xi_{L/K} \cup \zeta_{L/K}$, where \mathbf{Z} denotes the additive group of integers on which

¹⁾ For a G-group A we denote by A^G the set of all G-invariant elements of A, by I_GA the set $\sum_{\sigma \in G} (\sigma - 1)A$, and by GA the set of all $\alpha \in A$ such that $N_G\alpha = 0$. Here N_G means the norm operation with respect to the group G.