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1. The principal ideal theorem was conjectured by D. Hilbert and was
proved by Ph. Furtw\"angler [3]. The proof was simplified by S. Iyanaga [4],

H. G. Schumann (and W. Franz) [8] and E. Witt [11]. The purpose of this
short note is to give a cohomology-theoretic interpretation of these proofs.

The problem can be formulated in any class formation. We use the same
notations as in [5]. Let f\S be the given family of fields. To each k\in \mbox{\boldmath $\beta$}\S an
abelian group $E(k)$ is attached such that (i) for each extension $K/k(k, K\in P)$

there is an injection $\varphi_{k/K}$ : $E(k)\rightarrow E(K)$ , (ii) for each Galois extension $K/k(k,$ $K$

$\in$ St) the Galois group $G=G(K/k)$ operates on $E(K)$ and $\varphi_{k/K}E(k)=E(K)^{G1)}$ .
We assume, furthermore, that $\{E(K);K\in\ovalbox{\tt\small REJECT}\}$ satisfies the axioms of a class
formation in [5].

Let $k,$ $K,$ $L\in\theta,$ $k\subset K\subset L$ such that $K/k$ and $L/k$ are both Galois exten-
sions, and let $K/k$ be the maximal abelian extension in $L/k$ . Hence the Galois
group $H=G(L/K)$ is the commutator subgroup of the Galois group $G=G(L/k)$ :
$H=[G, G]$ .

PRINCIPAL IDEAL THEOREM. Under the above assumptions

(I) $\varphi_{k/K}E(k)\subset N_{H}E(L)$ for $H=[G, G]$ .

Since $H^{0}(G, E(L))\cong E(k)/N_{c,}E(L),$ $H^{0}(H, E(L))\cong E(K)/N_{H}E(L)$ and the restric-
tion mapping $res_{G/H}:H^{0}(G, E(L))\rightarrow H^{0}(H, E(L))$ is the canonical mapping;
$\alpha mod N_{G}E(L)\rightarrow\alpha mod N_{H}E(L)$ , the above proposition (I) is equivalent to

(I)* $res_{G/H}H^{0}(G, E(L))=1$ for $H=[G, G]$ .

2. Let $\xi_{L/k}\in H^{2}(G, E(L))$ and $\xi_{L/K}\in H^{2}(H, E(L))$ be the canonical cohomo-
logy classes. By the fundamental theorem of J. Tate [9] there are isomor-
phisms: $H^{-2}(G, Z)\cong H^{0}(G, E(L))$ by $\eta_{L/k}\rightarrow\xi_{L/k}\cup\eta_{L/k}$ and $H^{-2}(H, Z)\cong H^{0}(H, E(L))$

by $\zeta_{L/K}\rightarrow\xi_{L/K}\cup\zeta_{L/K}$ , where $Z$ denotes the additive group of integers on which

1) For a G-group $A$ we denote by $A^{G}$ the set of all G-invariant elements of $A$ , by
$I_{G}$ $A$ the set $\sum_{\sigma\in G}(\sigma-1)A$ , and by $GA$ the set of all $\alpha\in A$ such that $N_{G}\alpha=0$ . Here $N_{G}$

means the norm operation with respect to the group $G$ .


