On explicit formulas for the norm residue symbol

Dedicated to Professor Shôkichi Iyanaga on his 60th birthday

By Kenkichi IWASAWA*)

(Received Dec. 1, 1966)

Let p be an odd prime and let \mathbb{Z}_p and \mathbb{Q}_p denote the ring of p-adic integers and the field of p-adic numbers respectively. For each integer $n \ge 0$, let q_n $= p^{n+1}$ and let Φ_n denote the local cyclotomic field of q_n -th roots of unity over \mathbb{Q}_p . We fix a primitive q_n -th root of unity ζ_n in Φ_n so that $\zeta_{n+1}^p = \zeta_n$, and put $\pi_n = 1 - \zeta_n$; π_n generates the unique prime ideal \mathfrak{p}_n in the ring \mathfrak{o}_n of local integers in Φ_n . Let $(\alpha, \beta)_n$ denote Hilbert's norm residue symbol in Φ_n for the power q_n and let

$$(\alpha, \beta)_n = \zeta_n^{[\alpha,\beta]_n}$$

with $[\alpha, \beta]_n$ in \mathbb{Z}_p , well determined mod q_n . The classical formulas for $[\alpha, \beta]_n$ state that

$$\begin{split} [\zeta_n, \beta]_n &= q_n^{-1} T_n(\log \beta), & \beta \in 1 + \mathfrak{p}_n, \quad n \ge 0, \\ [\pi_n, \beta]_n &= -q_n^{-1} T_n(\zeta_n \pi_n^{-1} \log \beta), & \beta \in 1 + \mathfrak{p}_n, \quad n \ge 0, \\ [\alpha, \beta]_0 &= -q_0^{-1} T_0(\zeta_0 \alpha^{-1} \frac{d\alpha}{d\pi_0} \log \beta), & \alpha \in 1 + \mathfrak{p}_0, \quad \beta \in 1 + \mathfrak{p}_0^2, \end{split}$$

where T_n denotes the trace from Φ_n to $Q_p^{(1)}$.

In a previous note [7], we have announced formulas for $[\alpha, \beta]_n$ which generalize the above formulas of Artin-Hasse. In the present paper, we shall prove those formulas and then discuss some related results.

As in the above, we retain most of the notations introduced in our earlier paper [6]. In particular, we denote by N_n the norm from Φ_n to Q_p , and by $T_{n,m}$ and $N_{n,m}$ the trace and the norm, respectively, from Φ_m to Φ_n , $m \ge n \ge 0$; for an automorphism σ of the union Φ of all Φ_n , $n \ge 0$, we denote by $\kappa(\sigma)$ the

^{*)} The present research was supported in part by the National Science Foundation grant NSF-GP-4361.

¹⁾ See [1], [2], [5]. For the general theory of the norm residue symbol needed in the following, see [2], Chap. 12 or [4], II, §11, §19. It is to be noted that the symbol $(\alpha, \beta)_n$ in [2] is the inverse of the same symbol in [4]. Here we follow the definition of $(\alpha, \beta)_n$ in [2] as we did in [7].