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Introduction.

It seems to be natural in differential geometry to conjecture that many
theorems proved under the condition that the underlying manifolds are com-
pact can be extended to manifolds with complete Riemannian metric under
some suitable additional conditions.

Now, it is clear that for any smooth function $f$ on a compact manifold
there is a point $p$ such that $\nabla_{i}f(p)=0$ and $\nabla_{i}\nabla_{j}f(p)$ is negative semi-definite.
It is also clear that if a smooth function $f(x)$ on a real line $R$ has an upper
bound, then for any $\epsilon>0$ there is $x\in R$ such that $f^{\prime}(x)$ and $f^{\prime\prime}(x)$ are $<\epsilon$ .
This simple fact, however, can not be extended in general to a complete Rie-
mannian manifold. That is, there is a complete Riemannian manifold $M$ and
a bounded function $f$ on $M$ such that $m(p)=\{X^{i}X^{j}\nabla_{i}\nabla_{j}f(p);\Vert X\Vert=1\}$ is always
larger than $a>0$ . This example can easily be constructed on $R^{2}$ with metric
$dr^{2}+g(r)d\theta^{2}$ (in the polar coordinate expression). Let $f(r, \theta)=f(r)=\frac{\gamma^{2}}{1+r^{2}}$ .
Since

$\nabla\nabla f(=\nabla_{i}\nabla_{j}fdx^{t}dx^{j})=f^{\prime\prime}(r)dr^{2}+\frac{1}{2}f^{\prime}(r)g^{\prime}(r)d\theta^{2}$ ,

one can choose a suitable function $g(r)$ so that it satisfies (a) $g(r)$ is smooth
and $g(r)=r$ for $0\leqq r<1/2$ , (b) $g(r)$ is a solution of $g^{\prime}(r)/g(r)=2c/f^{\prime}(r)$ (for

example $g(r)=\exp\int_{1^{\gamma}}c(1-r)^{2}/rdr)$ for $r\geqq 1$ . In this example, one can see easily

that the sectional curvature has no lower bound.
In this paper, there will be proved first of all a generalization of this ex-

ample, that is:
THEOREM A. Let $M$ be a connected and complete Riemannian manifold

whose sectional curvature $K(X, Y)$ has a lower bound $i$ . $e$ . $K(X, Y)\geqq-K_{0}$ . If
a smooth function $f$ on $M$ has an upper bound, then for any $\epsilon>0$ , there is a
point $p\in M$ such that $\Vert gradf(p)\Vert<\epsilon$ and $m(p)=\max\{X^{i}X^{j}\nabla_{i}\nabla_{j}f(p);\Vert X\Vert=1\}$

$<\epsilon$ .
For an application of this theorem, an isometric immersion of $M$ into the

Euclidean N-space $R^{N}$ will be considered. It is clear that if $M$ is compact,


