An exponential formula for one-parameter semi-groups of nonlinear transformations

By J.W. NEUBERGER

(Received Oct. 26, 1965)

For a complete normed linear space S consider a function T from $[0, \infty)$ to the set of continuous transformations from S to S which satisfies:

- (1) T(x)T(y) = T(x+y) if x, y > 0,
- (2) $||T(x)p-T(x)q|| \le ||p-q||$ if $x \ge 0$, p, q are in S,
- (3) if p is in S and $g_p(x) = T(x)p$ for all x in $[0, \infty)$ then g_p is continuous and $\lim g_p(x) = p$.

If it is also specified that T(x) is linear for all $x \ge 0$, then one has a semigroup about which the following is known ([1] chapters 10, 11 and [3] sections 142, 143):

For all p in some dense subset of S, $g'_p(0)$ exists and if $Ap = g'_p(0)$ for all p for which $g'_p(0)$ exists, then $(I - xA)^{-1}$ exists, has domain S and is continuous for all $x \ge 0$. Moreover, if p is in S and $x \ge 0$,

(*)
$$\lim_{n \to \infty} \| (I - (x/n)A)^{-n}p - T(x)p \| = 0.$$

It is the purpose of this note to add to assumptions (1)-(3) a differentiability condition (which, it turns out, holds in the linear special case) which implies an "exponential formula" suggested by (*). The results of this note give a nonlinear version of the linear strong case of [1] (section 11.5); previous work [2] (section 3) of this author gave a nonlinear version of the linear uniform case of [1] (section 11.2).

The differentiability condition mentioned above is:

(4) there is a dense subset D of S such that if p is in D, then g'_p is continuous with domain [0, ∞).

If $\delta > 0$, denote $(1/\delta)[T(\delta)-I]$ by A_{δ} . The main result of this note follows. THEOREM. If (1)-(4) hold, p is in S and $x \ge 0$, then

$$\lim_{n\to\infty} \limsup_{\delta\to 0^+} \|(I-(x/n)A_{\delta})^{-n}p-T(x)p\|=0.$$

Consider first some lemmas.

LEMMA 1. Under conditions (1)-(3), if δ , x > 0, then $(I - xA_{\delta})^{-1}$ exists and has domain S.