Hardy-Littlewood majorants in function spaces

By Tetsuya SHIMOGAKI

(Received Jan. 9, 1965)

1. Throughout this paper, we term X a Banach function space¹⁾, if X is a normed linear space of integrable functions over the interval (0, 1) satisfying

- (i) $|g| \leq |f|^{2}$, $f \in X$ implies $g \in X$ and $||g|| \leq ||f||$;
- (ii) $0 \leq f_n \uparrow_{n=1}^{\infty} f \text{ implies } \sup_{n \geq 1} ||f_n|| = ||f||;$
- (iii) $0 \leq f_n \uparrow_{n=1}^{\infty}$ with $\sup_{n \geq 1} ||f_n|| < +\infty$ implies $\bigcup_{n=1}^{\infty} f_n \in X^{3}$.

We shall call the rorm fulfiling (i) and (ii) to be *semi-continuous*. X is said to have the *Rearrangement Invariant property*⁴⁾ (or shortly *RIP*), if each function g equimeasurable to a function $f \in X$ also belongs to X and ||g|| = ||f||.

Let f be an integrable function on (0, 1). The Hardy-Littlewood majorant $\theta(f)$ of f is the function defined by

(1)
$$\theta(f)(x) = \sup_{0 \le y \le 1} \int_{x}^{y} \frac{f(t)}{y - x} dt \ (x \in (0, 1)),$$

provided it exists almost everywhere. G. H. Hardy and J. E. Littlewood have shown that if $f \in L^p(1 < p)$, then $\theta(f)$ is defined and belongs to L^p also [9]. Here, in accordance with G. Lorentz [3], we shall say that X has the Hardy-Littlewood property, and shall denote by $X \in HLP$, if $f \in X$ implies $\theta(f) \in X$. In his paper cited above, G. Lorentz discussed this property for Banach function spaces having RIP^{5} , and presented necessary and sufficient conditions in order that $X \in HLP$, in case X is an Orlicz space L_{\emptyset} or a space $\Lambda(\phi)$.

The aim of this note is to give a necessary and sufficient condition in order that a general Banach function space X with *RIP* have the Hardy-Little-

5) In his paper Banach function spaces are introduced in terms of Köthe spaces.

¹⁾ Here we deal with Banach spaces consisting of real functions. For an exposition of Banach function spaces see [4].

²⁾ $|g| \leq |f|$ means that $g(t) \leq f(t)$ holds almost everywhere in (0, 1).

³⁾ A norm satisfying (iii) is called monotone complete. If a norm is monotone complete, it is complete.

⁴⁾ On account of Theorem 3 in [8], we may replace this condition by the weak rearrangement invariant property (this requires only $g \in X$, if g is equimeasurable to an $f \in X$) throughout this paper.