Closed hypersurfaces with constant mean curvature in a Riemannian manifold

By Kentaro YANO

(Received Feb. 1, 1965)

It has been proved by H. Liebmann [3] and W. Süss [4] that the only convex closed hypersurface with constant mean curvature is a sphere. To prove this theorem we need integral formulas of Minkowski.

Prof. Y. Katsurada [1], [2] derived integral formulas of Minkowski type which are valid in an Einstein space and proved the following generalisation of the theorem of Liebmann-Süss.

THEOREM. Let M be an (m+1)-dimensional orientable Einstein space and S a closed orientable hypersurface in M whose first mean curvature is constant. We suppose that M admits a one-parameter group of conformal transformations such that the inner product α of the generating vector v^{\hbar} and the normal C^{\hbar} to the hypersurface does not change the sign (and ± 0) on S. Then every point of S is umbilical.

The main purpose of the present paper is to derive three integral formulas which are valid in a general Riemannian manifold and to generalise Katsurada's theorem to the case of general Riemannian manifolds admitting a one-parameter group of homothetic transformations.

§0. Preliminaries.

We consider an orientable (m+1)-dimensional Riemannian manifold M with positive definite metric and denote by g_{ji} , V_j , K_{kji}^h , $K_{ji} = K_{kji}^k$, the fundamental metric tensor, the covariant differentiation with respect to the Riemannian connection, the curvature tensor, and the Ricci tensor of M respectively, where and in the sequel the indices h, i, j, k, \cdots run over the range $1, 2, \cdots, m, m+1$.

We assume that there is given an orientable hypersurface S whose local expression is

 $\xi^h = \xi^h(\eta^a) ,$

where ξ^h are local coordinates in M and η^a are local parameters on the hypersurface S, where and in the sequel the indices a, b, c, d, \cdots run over the range $i, \dot{2}, \cdots, \dot{m}$.